Читаем Беседы о новой иммунологии полностью

А может быть, и неимунные? Может быть, нормальные лимфоциты тоже бьют? И Сеславина поставила еще семь опытов. Тогда и произошло открытие. О том, что иммунные лимфоциты могут разрушать клетки, знали. Пусть это не было количественно точно измерено, но об этом знали. А то, что нормальные лимфоциты обладают таким же свойством, известно не было.

Сеславина получила положительный ответ. Да, обладают! Нормальные лимфоциты, в первый раз увидев чужеродные стволовые клетки, инактивируют их. Так и назвали это явление: «Инактивация несингенных (то есть чужеродных) стволовых клеток».

Классическая иммунология привыкла иметь дело с двумя основными реакциями, направленными на отторжение чужого: выработкой антител и появлением специфически сенсибилизированных клеток, несущих активные структуры на своей поверхности. И те и другие появляются через 3—7 дней после вторжения чужеродного пришельца, а накапливаются еще позже.

Как теперь стало известно, трудная ситуация для пересаженной ткани складывается задолго до выработки антител и накопления специфически вооруженных клеток. Во–первых, стимулируются к размножению лимфоциты — их будущие убийцы. Во–вторых, им самим очень трудно размножаться и расти в новом, «чужом» окружении. В–третьих, самые главные — стволовые — клетки, от которых зависит их рост, размножение и жизнь, выбиваются в первую очередь. Ткань пересажена, она функционирует, с большим или меньшим успехом выполняет свои задачи, но уже обречена, ее «корни» подрублены в первые же дни.


До открытия иммунологической толерантности пересадка органов казалась бессмысленной.

— Если иммунитет столь неумолим, значит, пересадки бессмысленны?

— На этот вопрос до 1953 года отвечали утвердительно: да, бессмысленны.

— Что же произошло в 1953 году?

— Открыли иммунологическую толерантность. Именно это сдвинуло проблему трансплантации с мертвой точки.

— Кто совершил открытие?

— Два человека, работавшие в разных странах, независимо друг от друга.

Летом 1952 года молодой сотрудник одной из лабораторий Института экспериментальной биологии Чехословацкой академии наук в Праге Милан Гашек поехал на птицеферму. И все началось… Во всяком случае, так утверждает сам Гашек.

В лаборатории задумали интересное исследование. Не совсем было ясно — вернее, совсем было не ясно, что получится, если в период эмбрионального развития двум зародышам сделать общую систему кровообращения. Так, чтобы в период, когда самостоятельные организмы еще не создались, кровь одного из них проходила через кровеносные сосуды другого, и наоборот. Главное здесь не столько общая система кровообращения, сколько общая кровь. Системы кровообращения различны, но в одном месте соединяются, и кровь обобществляется.



Потомство


Не ясно было, возможно ли создать такую модель. Не ясно было, жизнеспособна ли такая модель. Не ясно было (если окажется жизнеспособной), отразится ли эта операция на длительности жизни. Не ясно было, как скажется в дальнейшей самостоятельной жизни (если такая наступит) взаимное влияние двух зародышей разных пород.

Поставить такой эксперимент на кроликах, собаках или любых других млекопитающих казалось невозможным. Ведь эмбрионы млекопитающих развиваются в матке материнского организма. Как соединить в эксперименте кровеносные системы двух эмбрионов, развивающихся в разных материнских организмах?

Невозможно…

Зародыши птиц куда доступнее. Они развиваются отдельно от матери. Их можно вообще растить без матери. Зародыши птиц отделены от мира лишь тонкой яичной скорлупой. Под скорлупой на одной из наружных оболочек зародыша развивается сеть кровеносных сосудов, связанная с системой кровообращения тела зародыша.

Приблизительно к восьмому дню инкубации яйца при 37 градусах и развивается эта оболочка. Называется она «хорионаллантоисная мембрана». Если после восьмого дня в скорлупе двух яиц выпилить окошки, можно соединить эти мембраны.

Короче говоря, первое, что надо сделать, — поехать на ферму, договориться о поставке в институт яиц разных пород кур. Второе: в лаборатории необходимо завести инкубатор. Без него не будут развиваться куриные эмбрионы, соединенные хорионаллантоисными мембранами. Никакой самой деликатной матери–курице нельзя доверить столь тонкое устройство, как сращенные яйца. Когда такие цыплята вылупятся, их можно изучать, определяя влияние эмбрионального соединения, или, как его стали называть, эмбрионального парабиоза.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия
Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия