Читаем Беседы о рентгеновских лучах (второе издание) полностью

Справедливости ради надо сказать, что Л. Мейтнер тогда же добавила: «Предположение о существовании изомерных ядер дало бы возможность объяснить искусственные превращения урана».

В 1938 году ядерную изомерию обнаружили Н. Ферев и Э. Бретчер (Англия). Повторно и попозже. Тем не менее в 1963 Году один канадский научный журнал, посвященный проблемам ядерной энергии, поместил таблицу видов радиоактивности, где в качестве первооткрывателей фигурировали… британские специалисты, а не советские. Неосведомленность?

Но не ради этого затеян разговор о ядерной изомерии. Ее механизм поможет нам понять, как атом превращается в рентгеновскую трубку микроскопических размеров.

Выше говорилось, что рентгеновской и гамма-радиации принадлежат соседние области на непрерывном спектре, причем одна незаметно переходит в другую.

Там же поднимался бессмертный вопрос, детски наивный и философски мудрый: где начало того конца, которым оканчивается начало? Теперь, познакомившись с ядерной изомерией, мы, возможно, сумеем пусть не распутать, а хотя бы разрубить этот гордиев узел.

Гамма-излучение может быть мягче рентгеновского.

И наоборот: рентгеновское — жестче гамма-излучения.

Притом различить их физически невозможно! Почему же тогда оба они называются по-разному? Может, просто потому, что одно было открыто раньше другого, а когда установили их тождество, традиция увековечила терминологическую путаницу? Попробуем разобраться.

Вскоре после того, как Э. Резерфорд «разделил неделимый», а затем подготовил его «архитектурный проект» в виде планетарной модели, стало постепенно выясняться, что в атоме сосуществуют как бы два микромира. Во-первых, центральное ядро. Во-вторых, периферийные (орбитальные) электроны. С первым начали связывать гамма-радиацию, со вторыми рентгеновскую. И тут есть своя логика.

Вспомним, что значит один элемент превращается в другой. По сути, вот что: из одного ядра возникает другое. При этом второе, «дочернее», может образоваться в возбужденном состоянии, которое неустойчиво. Чтобы обрести стабильность, «дочь» испускает гамма-кванты, после чего «успокаивается». Такие переходы обычно мгновенны, отнимают что-то около 1/12 секунды. Но длительность их резко возрастает с уменьшением энергии переходов (а стало быть, и жесткости гамма-квантов). В некоторых случаях процесс завершается через часы, дни, месяцы, годы, десятилетия.

Иначе говоря, из одинаковых ядер иные могут существовать в основном, иные — в возбужденном состоянии. Вот их-то и называют изомерами (от греческого «изос» — «равный» и «мерос» — «доля»). И тут начинается самое интересное.

Оказывается, у многих из них переход к устойчивости не сопровождается столь заметным внешне эффектом, как «пушечный залп» гамма-квантами, покидающими атом. Возбужденное ядро может избавиться от избыточной энергии иначе, на внутриатомном уровне.

Передать ее своим же спутникам-электронам. Те, в свою очередь, переходят в неустойчивое состояние, возбуждаются. И один из них вылетает вон из атома.

Это так называемая внутренняя конверсия (от латинского «изменение», «преобразование»). Нас интересует не сама она, а ее следствие: вместо гамма-излучения (первичного, ядерного) наблюдается рентгеновское (вторичное, орбитальное). Как же оно рождается?

Когда один из электронов покидает их компанию навсегда, на освободившееся место тотчас перескакивает другой. Возможна и последующая «перетасовка», поскольку заполнение одной вакансии влечет за собой появление другой. А каждый прыжок с орбиты на орбиту сверху вниз сопровождается испусканием кванта энергии, который тем мощнее (жестче), чем значительней разница между верхним и нижним уровнями. Но в любом случае эта вторичная радиация мягче первичной, не состоявшейся. Она может быть видимой, световой, и незримой, рентгеновской.

Так генерируют ее и радиоизотопы, которые вкраплены в любую горную породу… — в Антарктиде ли, в Сахаре или Сибири. Для этого им не нужна высокая температура, не требуется тепло, подводимое извне. Напротив, они сами нагревают земную кору и лежащую под ней мантию, выделяя энергию в процессе распада.

А в недрах Солнца, которые раскалены до многих миллионов градусов? Там, как мы знаем, доминирует именно рентгеновская радиация. Порождается они опять-таки электронами, но свободными, оторванными от своего атома, ставшего ионом. При той несусветной жаре они наделены огромной энергией. Ошибаясь, тормозясь, они теряют ее, испуская жесткие кванты. Возможны, конечно, и другие механизмы. Например, ион, сталкиваясь со сверхскоростными частицами, возбуждается и, переходя в более спокойное состояние, выбрасывает избыток энергии сгустками — рентгеновскими квантами. Он действует как пулемет: подзарядка, стрельба. И так далее.

Нечто подобное происходит с плазмой и на Земле, при ядерных взрывах например.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука