Со времени Э. Резерфорда, впервые наблюдавшего, как ведут себя на близком расстоянии альфа-частица и атомное ядро, физики только тем и занимаются, что сталкивают ядерные частицы, получая сведения, необходимые для построения теории. Они считают, что раскроют все тайны и решат все загадки сильного взаимодействия в том случае, если заставят, например, протоны подойти как можно ближе друг к другу. Экспериментаторы добиваются этого, сообщая протонам с помощью ускорителей все большую энергию.
Но мир элементарных частиц, который не может существовать вне своей питательной среды — огромной энергии, — очень чутко реагирует на ее изменение. Предсказания о поведении частиц в новом энергетическом диапазоне, основанные на наблюдениях за ними при меньших энергиях, сбываются очень редко.
Перед протонами, имеющими скорость, близкую к скорости света, открываются, как правило, совсем другие возможности, чем перед протонами, обладающими небольшой скоростью. А это означает, что экспериментаторы всякий раз имеют дело как бы с совершенно незнакомым объектом, который предстоит изучить заново. Желанная цель — открытие законов, управляющих сильными взаимодействиями, — отступает все дальше по мере продвижения к ней, как отступает горизонт перед усталым путником. И сегодня описание простейшего, казалось бы, события — встречи протона большой энергии с другим протоном — одна из наиболее острых проблем физики высоких энергий.
Что же превратило реакцию столкновения двух ядерных частиц в обильный источник труднейших вопросов?
Мощные ускорители разгоняют протоны столь сильно, что соответствующая им по квантовой механике длина волны становится на три порядка меньше размера самой частицы. Это, в свою очередь, делает ядерную реакцию далеко не безразличной к внутреннему устройству протонов: во взаимодействии двух частиц, по сути дела, проявляется взаимодействие между собой их составных частей.
Какими же видят друг друга сближающиеся протоны огромных энергий?
В том-то и дело, что физики не знают, какую структуру имеют адроны (мы уже говорили, что адроны — это общее название всех сильновзаимодействующих частиц), а поэтому и не могут себе представить, как произойдет столкновение всего двух элементарных частиц.
Экспериментаторы добросовестно делают свое дело — скрупулезно, по крупинкам, собирают разрозненные и отрывочные сведения о поведении адронов. Теоретики на этой основе создают схемы строения адронов и моделируют реакции элементарных частиц при больших энергиях. Круг познания — наблюдение, осмысливание, предсказание, проверка, — замыкаясь, выявляет истину. На сегодня она состоит в том, что, подобно ядру, которое то проявляет себя как капля ядерного вещества, то похоже на группу собравшихся зачем-то вместе независимых нуклонов, адроны тоже подчас демонстрируют совершенно противоположные свойства.
Группа дубненских физиков под руководством доктора физико-математических наук В. Никитина сначала на Серпуховском ускорителе, а затем совместно с американскими учеными на ускорителе в Батавии (США) исследовала одну и ту же реакцию — упругое рассеяние протонов больших энергий на протонах. То есть такое взаимодействие между частицами, когда налетающий протон расходует всю свою энергию только на изменение скорости протона-мишени; как это происходит, например, при ударе одного бильярдного шара о другой.
Цель этих опытов — измерение радиуса протона при разных энергиях столкновения. Мишень — газовая водородная струя — облучалась протонами с энергией от 10 до 400 миллиардов электрон-вольт. Результаты оказались несколько неожиданными: размер протона увеличивался с увеличением скорости сталкивающихся частиц.
И с этим представлением о протоне как о чем-то монолитном, занимающем большую или меньшую, но вполне измеримую область пространства, приходится увязывать совсем иной образ этой частицы. Образ, который возникает при исследовании другого варианта этой же реакции — неупругого рассеяния очень быстрых протонов на протонах. В этом последнем случае аппаратура регистрировала протоны, отклонившиеся на большие углы и потерявшие значительную часть своей энергии. Эта энергия передавалась протону-мишени и шла не на изменение его скорости, а на изменение его внутренней структуры, на рождение новых частиц.
Легко вообразить, каково было изумление ученых, когда обнаружилось, что характер изменения числа отклоненных частиц в зависимости от величины угла точно такой, какой был найден Э. Резерфордом для альфа-частиц, рассеянных тонкими пленками вещества.
Э. Резерфорд, обнаружив альфа-частицы, которые отклонялись на угол до 180 градусов от первоначального направления, сразу высказал гипотезу об атомном ядре. То есть о том, что в атоме есть нечто, сравнимое по массе с альфа-частицей и способное резко изменить направление ее движения.
Аналогичный вывод, теперь уже по отношению к элементарным частицам, вынуждены были сделать и современные ученые. Ускоренные электроны и протоны, сталкиваясь с протонами-мишенями, передавали свою энергию каким-то внутрипротонным структурным единицам.