Читаем Беседы об атомном ядре полностью

В последнее время ученые рассматривают еще одну принципиальную возможность переделки урана-238 в изотоп, пригодный для ядерной энергетики, с помощью… ускорителя нейтронов.

Способа ускорения нейтральных частиц как будто не существует. Все современные синхрофазотроны, циклотроны, синхроциклотроны ускоряют заряженные, и только заряженные, частицы. И в самом маленьком и в самом большом из этих устройств частицы подхлестываются электрическим полем. А чем можно подтолкнуть нейтрон?

Идею ускорения нейтронов предложил в 1959 году советский ученый Ю. Петров. Конечно, эту гипотезу нельзя проверить ни на одном из известных типов ускорительных устройств. Дополнительные порции энергии нейтрон должен получать от… ядер, находящихся в возбужденном состоянии, то есть имеющих избыточную энергию.

Представим себе, что удалось создать особую среду, значительная доля ядер которой находится не в основном состоянии, а в изомерном. Эта среда напоминает рабочее тело гамма-лазера, насыщенное ядрами-изомерами (об этом мы говорили в предыдущей главе). Нейтрон, сталкиваясь с ядром, как бы спускает взведенный ядерный курок. Система связанных нуклонов переходит в основное состояние, а нейтрон забирает ее избыточную энергию.

В этом необычном ускорителе нейтроны, набирающие энергию при хаотических соударениях с возбужденными ядрами, напоминают пчел, суетящихся около цветов в поисках нектара. Далеко не каждый цветок оказывается со сладкой капелькой, и далеко не каждая встреча ядра с нейтроном приводит к возрастанию энергии нейтрона. Ядро может оказаться невозбужденным.

В этом случае нейтрон не только не увеличивает свою энергию, но может потерять накопленную раньше, если масса ядра ненамного превосходит его собственную массу. Изомерное ядро, сбрасывая избыток энергии при столкновении с нейтроном, испытывает отдачу. Более массивные изомерные ядра в нейтронном ускорителе предпочтительнее, поскольку они тратят на отдачу гораздо меньше энергии, чем легкие.

В ускорителе нейтронов не должно быть изомерных ядер, имеющих запасные уровни возбуждения при энергии, равной той, до которой желательно разогнать нейтроны. Иначе вместо ускорения нейтроны сами начнут «накачивать» ядра энергией, переводя их в возбужденные состояния.

Предварительные теоретические оценки показывают, что подходящая изомерная среда может стать ускорителем нейтронов до энергии в один или два миллиона электрон-вольт.

В установке, содержащей уран-238, перемешанный с изомерными ядрами, по-видимому, может возникнуть самоподдерживающаяся реакция деления.

В самом деле, возбужденные ядра, отдавая свою энергию нейтронам, поддерживали бы их в отличной «спортивной» форме, и они постоянно были бы в состоянии преодолеть высокий энергетический барьер деления ядер урана-238.

Ученые пока обсуждают только принципиальные вопросы, связанные с созданием подобного изомерного реактора. Но неожиданная радикальная идея может сразу продвинуть вперед решение этой проблемы. Не так давно группа советских ученых выдвинула предложение, как с помощью светового пучка лазера сжимать делящееся вещество, повышая его плотность в сотни раз. Естественно, что в случае успеха это сразу снизило бы необходимое критическое количество вещества, при котором возникает цепная ядерная реакция деления. Эта идея, возможно, приблизит момент проверки гипотезы об изомерном реакторе. Она поможет обойти главную трудность для его практической реализации — заготовку огромного количества изомерных ядер.

Когда будет создан реактор на сжатом делящемся веществе, можно будет проверить на опыте и принцип действия изомерного реактора, для которого необходимо будет создать всего лишь граммы изомерных ядер.

— А что будут делать люди потом, когда исчерпаются запасы тяжелых элементов?

— Имея это в виду, физики давно пытаются осуществить вторую возможность получения ядерной энергии, соединяя два легких ядра.

— «Опыт» Солнца нам здесь не поможет?

В общих чертах ученые знают, как работает солнечная «установка», вырабатывающая энергию, благодаря которой на Земле возникла жизнь и появился человек. Слияние ядер водорода — основная ядерная реакция, протекающая как в далеких звездах, так и в нашем Солнце. Эту звездную реакцию физики впервые воспроизвели в земных условиях еще в 1932 году, сразу после запуска первого ускорителя.

Искусственно ускоренные ядра изотопа водорода — дейтерия, — соударяясь с покоящимися дейтонами (ядрами дейтерия) мишени, превращались в ядра гелия с большим дефектом массы. Каждое такое событие непременно сопровождалось выделением энергии в точном соответствии с формулой А. Эйнштейна E = mc2.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука