А. Эйнштейн говорил впоследствии: «Я сосредоточил свои усилия на отвлеченной теории, в то время как Резерфорд сумел достичь глубоких познаний путем довольно простых размышлений и использования сравнительно несложных экспериментальных средств».
Э. Резерфорд и А. Эйнштейн выполнили самую первую необходимую работу для проникновения в микромир.
В сторону были сдвинуты такие колоссы, как ньютоновские представления о пространстве и времени, закон неизменности массы тел.
Знаменитая формула А. Эйнштейна заставила всех по-иному посмотреть на радиоактивный распад. Не надо было тщиться рассмотреть его сразу с двух отдельных вершин: закона сохранения энергии и закона сохранения массы. Достаточно было взойти на одну-единственную, но гораздо более высокую и удобную для обозрения вершину под названием «единый», или «обобщенный, закон сохранения массы и энергии».
С этой вершины уже можно было заметить, что потеря части ядерной энергии при радиоактивном распаде обязательно должна сопровождаться потерей и части его массы.
На первом же международном Сольвейском конгрессе, посвященном строению вещества, в 1913 году, уже после открытия атомного ядра, французский ученый П. Ланжевен впервые высказал мысль о том, что недостача в атомном весе изотопов по формуле E = mC2 связана с изменением энергии атомных ядер.
— Значит, по формуле А. Эйнштейна можно найти запас энергии ядра, соответствующий величине «дефекта массы»?
— Недостача в массе означает потерю энергии, а не ее запас. Залог существования каждой упакованной из отдельных составных частей системы, в том числе и ядра, — энергия, выделяемая при образовании системы.
— Из каких же запасов черпает энергию радиоактивное излучение?
— Тяжелые нестабильные ядра имеют меньший «дефект масс», чем более плотно упакованные ядра среднего веса. Энергия, соответствующая разнице между этими недостачами, и есть тот заряд, который делает тяжелые ядра нестабильными и при случае взрывает их, сообщая большую скорость частицам радиоактивного излучения.
Понять, почему атомные ядра облагаются налогом за право существования, самим физикам удалось только после того, как они разобрались в структуре ядра.
Первые же сведения о зарядах и массах «точечных» ядер атомов наводили на мысль, что эти точки, в свою очередь, слеплены из других частиц. Но из чего могло состоять ядро?
Идея У. Праута о типовом строении атомов всех элементов из атомов самого легкого элемента — водорода, в переводе на ядерный язык звучала так: все ядра состоят из ядер атомов водорода.
И в самом деле, из ядер водорода (их назвали протонами) легко можно было получить массу любого изотопа, а их единичные положительные электрические заряды определяли заряд ядра.
Беспокоило только одно обстоятельство, которое никак не удавалось обойти. Если сложить положительные заряды всех протонов, участвующих в построении ядра с определенной массой, то сумма получалась больше, чем был заряд, который на самом деле имело ядро.
Деваться было некуда. Физики пошли на компромисс и признали, что ядра не могли состоять из одних протонов. Что-то должно было нейтрализовать какое-то число зарядов протонов.
Тут бы и разгуляться воображению, тут бы… Но суровая реальность подрезала крылья фантазии. Ассортимент подходящего строительного материала для ядер был очень беден. Приходилось брать не то, что надо, а то, что есть. А кроме протона, на учете у ученых была только одна-единственная частица — электрон с единичным отрицательным электрическим зарядом. Масса у электронов небольшая, поэтому практически, не меняя веса ядра, они могли нейтрализовать какое-то число положительных зарядов протонов.
Однако вскоре обнаружилась «несовместимость» протонов с электронами в ядрах, доставившая физикам массу забот и хлопот в объяснении многих ядерных свойств.
Только через двадцать лет ученик Э. Резерфорда Дж. Чедвик обнаружил настоящего компаньона протона по ядру — нейтрон. Новая элементарная частица имела почти такую же массу, как и протон, но была нейтральной, без электрического заряда. Это было как раз то, что нужно.
Теперь старинный лейтмотив о единстве строения материи уверенно и мощно зазвучал в переложении на ядерный, нейтронно-протонный лад.
В новом переложении была та долгожданная гармония, которая до конца прояснила самую суть явления радиоактивности, как превращения ядерных протонов или нейтронов.