Читаем Беседы об информатике полностью

Кибернетика — наука об информационном управлении, и Н. Винера с полным правом можно считать творцом этой науки. Поскольку информационный аспект кибернетики и составляет ее основное новое ядро, именно ему в кибернетической литературе уделялось относительно мало внимания. Все новое воспринимается не сразу. Лишь в середине 60-х годов появились работы научной школы академика Б. Петрова (1913–1981), посвященные информационной теории автоматического управления. Своего полного развития эти работы не получили и до настоящего времени.

В любом процессе управления информация играет основную роль. Это тем более заметно, чем сложнее процесс, чем больше различных возможностей возникает перед системой и соответственно чем среди большего количества возможностей осуществляется выбор в процессе управления. Ну а как же математика? — наверняка спросит кто-нибудь из читателей.

А математика?

Все сказанное распространяется на мысли Н. Винера об организации коллективов, где математики трудились бы бок о бок с физиологами. Подобные коллективы не раз и не два формировались, но эффекта, которого ожидали от этого Н. Винер и его последователи, они не принесли. Чистый математик-профессионал — это человек, умеющий создавать абстракции и оперировать с ними, изучая различные свойства таких «простых» абстракций, как число, точка, числовая ось, пространство и т. п., и сложных конструкций, составленных из нескольких абстракций. Что значит получить результат в математике? Обнаружить новое свойство, а еще лучше группу свойств данной абстрактной конструкции.

Инженер или физиолог может использовать математические результаты для описания изучаемых ими объектов и предсказания их поведения. Для этого совершенно необязательно быть математиком. Нужно знать о существовании того или иного математического аппарата и ориентироваться в особенностях применения этого аппарата. Человек, имеющий понятие о существовании квадратного управления, умеющий брать интегралы, решать дифференциальные уравнения и т. п., но и только, это ни в коем случае не математик, просто грамотный человек. Между подобным человеком и математиком-профессионалом лежит такая же пропасть, как между человеком, просто умеющим читать и писать, и поэтом или писателем.

У математиков и представителей естественных наук разный образ мышления. С позиций сегодняшних знаний, высказывается предположение, что инженер и математик мыслят разными полушариями головного мозга: инженер — правым, математик — левым. В одном человеке способности инженера и математика почти никогда не совмещаются. Такие случаи известны, но за всю историю человечества они насчитываются единицами.

Зато история науки знает много примеров, когда для описания изучаемых ими явлений ученые пользовались неким математическим аппаратом, не подозревая о его существовании. Так случилось с О. Хевисайдом, который разработал операторный метод исследования электрических цепей, не имея ни малейшего представления о том, что он пользуется известным преобразованием Лапласа.

Можно ли считать, что инженер О. Хевисайд заново создал преобразование Лапласа, получив тем самым некоторый результат в математике? В том-то и дело, что нельзя. В разделе математики, посвященном интегральным преобразованиям (частным случаем здесь является преобразование Лапласа), основной вопрос — это условия существования таких преобразований и их свойства. О. Хевисайда это совершенно не занимало. Он использовал случайно обнаруженный им факт, что замена операции дифференцирования умножением на некоторую специальную величину — оператор — позволяет преобразовать трудно решаемые дифференциальные уравнения в более просто решаемые алгебраические уравнения. Если бы подобную операцию можно было совершать не над каждым дифференциальным уравнением, а скажем, над девятью из десяти, О. Хевисайда это ничуть бы не смутило. Он придумал бы какой-нибудь способ проверки.

Похожий случай произошел с В. Гейзенбергом. Создавая свою матричную механику, он не знал, что пользуется известной матричной алгеброй. И про В. Гейзенберга нельзя сказать, что он заново создал матричную алгебру. Он не исследовал ее свойств, а лишь убедился, что, совершая определенные действия, получает интересующий его результат. Все сказанное хорошо иллюстрирует знаменитая фраза А. Эйнштейна: «После того как математики занялись теорией относительности, я, кажется, перестал ее понимать».

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки