Он нашел математические доказательства поразительно ненадежными. "Подавляющая часть аргументации, которую мне было велено принять, была очевидно ошибочной" (ibid, р. 209). И он не был удовлетворен достоверностью аксиом ― геометрических и арифметических. Он отдавал себе полный отчет в скептической критике интуиции: раз и навсегда лейтмотивом его публикаций была борьба со "смешением психологически субъективного и логически априорного" (Russell, 1895, р. 245). Каким образом можно установить, что вводы истины сверху в теорию неоспоримы? Разбирая эту проблему, он проанализировал одну за другой аксиомы геометрии и арифметики и обнаружил, что они основываются на различных видах интуиции. В своей первой опубликованной статье (1896) Рассел проанализировал с этой точки зрения аксиомы евклидовой геометрии и нашел, что некоторые из аксиом с достоверностью истинны и в особенности
Итак, Рассел пытался установить иерархию априорных истин, "математических верований", геометрических или арифметических. Он "прочитывал книги, стараясь найти такую, которая представляла бы более твердую основу для них" (Russell, 1959, р. 209). Таким образом, он наткнулся на Фреге.*[19]
Он сразу же признал решение Фреге ― извлечь всю математику из тривиальных логических принципов. Арифметическая интуиция была выброшена в мусорную корзину для отслуживших детривиализованных тривиальностей, разделив судьбу механической и геометрической интуиции, в то время как воцарилась логическая интуиция, причем не просто как "интуиция", но как непогрешимое интеллектуальное проникновение, как супертривиальная суперинтуиция. Арифметическая тривиализация математики была развенчана и замещена её логической тривиализацией.Чтобы по достоинству оценить этот шаг, нам надо рассмотреть то особое место, которое занимает логическая интуиция. Евклидианцы развенчивали один за одним интуитивные источники ввода истины в теорию сверху, находимые (принимаемые) своими предшественниками. Открытие иррациональных чисел заставило древних греков отказаться от пифагорейской арифметической интуиции в пользу евклидианской геометрической интуиции: арифметика должна была быть переведена в кристально ясную геометрию. Чтобы завершить этот перевод, они разработали свою сложную "теорию пропорций". "Проясняя понятие иррационального числа", XIX в. переключился опять на арифметическую интуицию как на