Читаем «Безумные» идеи полностью

Но тела, скрепленные пружинами, не закреплены намертво. Они могут колебаться около той точки, в которой они закреплены. Так же обстоит дело и с атомами, входящими в молекулу. Они тоже могут колебаться вокруг своих положений равновесия. Далеко разойтись они не могут, так как их стягивают между собой электроны. Сильно сблизиться между собой они тоже не могут, так как их расталкивают одноименные заряды ядер.

Таким образом, все ядра в большей или меньшей степени колеблются вокруг своего положения равновесия.

И если бы мы могли увидеть молекулу аммиака, то атомы представились бы нам туманными пятнышками, размеры которых зависят от размахов их колебаний.

Присмотревшись внимательней, мы заметили бы, что размеры туманных пятнышек внезапно меняются. Они то увеличиваются, то уменьшаются.

Это значит — колебательное движение может становиться то сильнее, то слабее. Значит, может изменяться не только вращательная, но и колебательная энергия молекулы аммиака?

Да, изменения колебательной энергии тоже могут быть вызваны как столкновением с другой молекулой, так и поглощением или излучением электромагнитной волны. Только это уже не волны радиодиапазона. Они принадлежат к области инфракрасного света.

Это было опять не то, что искали наши ученые. Им хотелось создать генератор радиоволн, а вовсе не источник инфракрасных лучей. И если бы на этом кончились особенности загадочной пирамиды, она не была бы избранницей Басова и Прохорова и, следовательно, не стала бы героиней нашего рассказа.

О том, что так привлекло к ней внимание, из-за чего ей было отдано столько надежд, и не напрасно, пойдет речь дальше.

В роли перчатки

Если бы наше зрение обрело способность заглянуть в микромир молекулы аммиака, нам открылась бы поразительная картина. Молекула иногда внезапно меняет свой вид. Она вдруг выворачивается наизнанку, как перчатка! Атом азота неожиданно оказывается лежащим не над треугольником атомов водорода, а под ним. Затем столь же внезапно все возвращается в исходное положение, атом азота оказывается на первоначальном месте. Мы как бы видим молекулу и ее зеркальное изображение.

Это повторяется неоднократно. Самое удивительное заключается в том, что такое перемещение происходит отнюдь не в результате поворота молекулы. Все происходит так, как если бы атом азота проскакивал между атомами водорода. Но так как атом азота более чем в четыре раза тяжелее, чем три атома водорода, вместе взятые, то правильнее было бы сказать, что треугольник с атомами водорода в его вершинах оказывается то с одной, то с другой стороны атома азота.

Инверсия — таким красивым словом назвали ученые это явление. Инверсионный переход. И вот оказывается, такой переход возможен только в молекулах. Ни в одном из тел крупных размеров он невозможен. То есть не может происходить сам по себе.

Когда кто-нибудь высказывал сомнения по этому поводу, Прохоров легко рассеивал их, предлагая посмотреть на модель молекулы аммиака. Ее можно, говорил он, изготовить из трех маленьких и одного большого шарика, связанных пружинками так, чтобы они образовали пирамиду. Чтобы произвести инверсию, то есть продавить один шарик между тремя остальными, нужно было бы приложить какую-то силу. Сжать пружины не так-то легко. Если же это удастся, то шарик займет новое положение равновесия и отнюдь не будет стремиться возвратиться обратно. Для его возвращения необходимо было бы проделать всю работу сначала.

В молекуле же инверсионные переходы осуществляются сравнительно часто и без всякой видимой причины. Причем они происходят самопроизвольно, без воздействия со стороны.

Тут мы подходим к главному. Эта инверсия оказывается виновницей того, что молекула аммиака способна произвести на свет еще одну серию электромагнитных волн, помимо тех, о которых мы уже говорили. Эти радиоволны длиной около 1,25 сантиметра, расположенные в удобном для работы диапазоне, вполне устраивали ученых. Это было как раз то, что они искали...

...Что же, это конец поисков и нашей истории? О нет! Это начало новых трудностей. Это ответ, который порождает следующий вопрос. Этот этап был только отправной точкой для создания молекулярных генераторов радиоволн.

Новые трудности

Если бы молекулы аммиака свободно летали в пустом пространстве, не сталкиваясь между собой и не взаимодействуя с электромагнитными волнами, все они со временем совершили бы вожделенный переход в состояние с меньшей энергией. Ведь такое стремление является законом для всех молекул. И молекулы аммиака тут не составляют исключения.

Но молекулы сталкиваются между собой, взаимодействуют с электромагнитными волнами, поглощая или отдавая энергию. Поэтому среди них есть молекулы и с малым и с большим запасом энергии. Однако первых всегда больше. Поэтому ни один из газов в обычном состоянии не способен излучать радиоволны: молекул-приемников в нем гораздо больше, чем молекул-передатчиков. И вот тут-то и крылся камень преткновения.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

1937. Трагедия Красной Армии
1937. Трагедия Красной Армии

После «разоблачения культа личности» одной из главных причин катастрофы 1941 года принято считать массовые репрессии против командного состава РККА, «обескровившие Красную Армию накануне войны». Однако в последние годы этот тезис все чаще подвергается сомнению – по мнению историков-сталинистов, «очищение» от врагов народа и заговорщиков пошло стране только на пользу: без этой жестокой, но необходимой меры у Красной Армии якобы не было шансов одолеть прежде непобедимый Вермахт.Есть ли в этих суждениях хотя бы доля истины? Что именно произошло с РККА в 1937–1938 гг.? Что спровоцировало вакханалию арестов и расстрелов? Подтверждается ли гипотеза о «военном заговоре»? Каковы были подлинные масштабы репрессий? И главное – насколько велик ущерб, нанесенный ими боеспособности Красной Армии накануне войны?В данной книге есть ответы на все эти вопросы. Этот фундаментальный труд ввел в научный оборот огромный массив рассекреченных документов из военных и чекистских архивов и впервые дал всесторонний исчерпывающий анализ сталинской «чистки» РККА. Это – первая в мире энциклопедия, посвященная трагедии Красной Армии в 1937–1938 гг. Особой заслугой автора стала публикация «Мартиролога», содержащего сведения о более чем 2000 репрессированных командирах – от маршала до лейтенанта.

Олег Федотович Сувениров , Олег Ф. Сувениров

Документальная литература / Военная история / История / Прочая документальная литература / Образование и наука / Документальное
1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука