Читаем Big data простым языком полностью

Роль AlphaGo здесь совершенно не заменима при понимании основ игры го, потому что алгоритм смотрит на нее не так, как человек. Алгоритму не важны получаемые очки, потому что выиграть можно всего лишь с перевесом в одно очко, что и делает алгоритм. В результате получается новая, так называемая «мягкая» тактика, когда алгоритм стремится не к максимизации очков, а к устойчивому равновесию.

Появление таких сервисов изменяет саму суть игры, позволяет по-иному взглянуть на нее, применяя более зрелые подходы, которым учит нас алгоритм.

Сам алгоритм состоит из трех основных слоев:

• Стратегическая сеть – слой, который перебирает в памяти результаты всех сыгранных партий;

• Оценочная сеть – слой, который оценивает эффективность текущих позиций;

• Поиск по дереву – слой, который прогнозирует наиболее ценный ход руководствуясь эффективностью.

Если разобрать инфраструктуру, на которой был построен алгоритм AlphaGo, то это не какой-то сложный вычислительный суперкомпьютер. Его обучение проходило на пятидесяти графических процессорах в облаке Google Cloud. Если соотнести с рынком, то пятьдесят графических процессов эквивалентны небольшой майнинговой ферме по добыче криптовалюты, а использование облачных технологий делает весь процесс максимально мобильным.

Все оценки экспертов о невозможности существования такого алгоритма были разбиты. Это означает, что точка сингулярности технологий, о которой так много говорили, находится ближе, чем все думали[21]. Сегодня в разработке находится множество проектов, которые качественно иным образом упростят взаимодействие человека с окружающим миром.

Как ни парадоксально звучит, но хоть AlphaGo и работает на данных, совершая ход, он может учитывать и иные перспективы. Это означает, что если рассмотреть алгоритм как организацию, она одновременно демонстрирует черты как data-driven, так и data-informed. Возможно, это то будущее, которое будет наиболее эффективным в условиях постоянно меняющегося мира.

<p>4-я промышленная революция, или Почему человек больше не нужен для поиска инсайтов</p>

Говоря о возросшей роли данных в построении организаций нового типа, нельзя не отметить фундаментальный труд экономиста и основателя World Economic Forum Клауса Шваба, согласно которому мы переживаем четвертую промышленную революцию, основанную на данных.

Данные, алгоритмы распознавания и нейронные сети – все это позволило изменить традиционные процессы, вытеснить из них человека как необходимый элемент для обработки информации.

Отличным примером этого может быть сервис Stafory «Робот Вера» или Intervio от команды PryTek, который находит потенциальных кандидатов на выбранную позицию, обзванивает их, проводит их опрос и делает оценку соответствия потенциального кандидата предлагаемой позиции с использованием основных методик управления людьми, такими как Big Five. Происходит это благодаря сбору данных из баз резюме, таких как HeadHunter или TrudVsem. Так что, процесс поиска и отбора кандидатов на определенные позиции, уже сегодня может проходить без участия человека. Intervio – наоборот представляет собой сервис, где соискатель просто рассказывает свою историю, отвечая на вопросы, которые заранее записаны в виде видео интервью, а программа обрабатывает изображение, голос и получаемый текст и выдает оценки по психотипу, навыкам, используя сложный алгоритм нейролингвистического анализа. Это такой специальный алгоритм, который позволяет машине понять смысл слов. Например, «я хмурый иду по осеннему лесу» и «я иду по хмурому осеннему лесу» – два похожих предложения, но смысл у них разный. Машины уже способны уловить разницу в этом смысле.

С одной стороны, это серьезная трансформация процесса процесс подбора и резкое снижение его стоимости, с другой – чтобы пользоваться таким процессом, организации необходимо быть готовой внедрять такие сервисы в режиме Plug and Play, постоянно подключая эффективные цифровые сервисы и заменяя привычные процессы, требующие участия человека.

Датчики, телеметрия, бесконечные потоки данных, формирующие океан информации, создали новую цифровую экосистему. В ней с повышением интеграции данных в текущие процессы меняется и роль человека. На смену традиционным профессиям индустриальной экономики приходит запрос на новые навыки в отношении управления и интеграции данных. Рынок и трансформация модели конкуренции открывают новые ниши для небольших игроков, которые формируют основное давление на современные большие компании. Чтобы быть эффективным, бизнесу придется акцентировать больше внимания в своем развитии на создание адекватной инфраструктуры сбора и обработки данных, а также решить ряд важных задач. Среди них ключевую роль играют методология и стандартизация протоколов передачи данных, информационная безопасность, аудит и управление качеством данных.

Перейти на страницу:

Похожие книги

97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программирование. Принципы и практика использования C++ Исправленное издание
Программирование. Принципы и практика использования C++ Исправленное издание

Специальное издание самой читаемой и содержащей наиболее достоверные сведения книги по C++. Книга написана Бьярне Страуструпом — автором языка программирования C++ — и является каноническим изложением возможностей этого языка. Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный -ориентированный подход к созданию программных продуктов. Третье издание бестселлера было существенно переработано автором. Результатом этой переработки стала большая доступность книги для новичков. В то же время, текст обогатился сведениями и методиками программирования, которые могут оказаться полезными даже для многоопытных специалистов по C++. Не обойдены вниманием и нововведения языка: стандартная библиотека шаблонов (STL), пространства имен (namespaces), механизм идентификации типов во время выполнения (RTTI), явные приведения типов (cast-операторы) и другие. Настоящее специальное издание отличается от третьего добавлением двух новых приложений (посвященных локализации и безопасной обработке исключений средствами стандартной библиотеки), довольно многочисленными уточнениями в остальном тексте, а также исправлением множества опечаток. Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук».

Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова

Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT