Я бы постарался разделить весь этот необъятный пирог из данных внутри организации на какие-то разумные блоки или куски.
Интуитивно понятным мне видится выделить хотя бы три блока информации, которыми можно попробовать управлять каждым по-своему. Ими будут – клиенты, справочники и продукты.
Такие блоки для простоты предлагаю называть «доменами», только не будем путать их с теми доменами, которые есть в Интернете. В текущем контексте «домен» – это группа однородной информации, которой нужно управлять. Большую часть информационного пирога можно разделить на три крупных блока, чтобы с этим начать работать по закону Парето[137].
Почему так?
На моей практике оказалось, что решения или инструменты (программные средства), которые обещают стать универсальным средством, по факту проигрывают в этом соревновании. Либо они становятся малоэффективными, то есть не позволяют выявить проблемы в данных, либо они становятся неимоверно дорогими, до такой степени, что стоимость их использования совершенно не сопоставима с получаемой ценностью.
Поэтому я для себя решил, что одного универсального средства ото всех бед не существует. Кстати, такие универсальные инструменты называются MDM-платформами[138]. Какое-то время они считались единственным средством против всех болезней и рекомендовались к внедрению в любой организации для любой проблемы. В реальности каждое такое внедрение превращалось в некий эпик фейл, то есть в мероприятие, обреченное на провал. Поиск Святого Грааля в решениях с данными натолкнул на мысль о «вырожденности» решений, которые могут управлять различными доменами. «Вырожденность» подразумевает, что свойства и функции каждого из инструментов для различных доменов сильно отличаются друг от друга. Инструмент по управлению качеством данных для домена «Клиенты» не подходит для управления качеством в домене «Справочники» – и наоборот.
Теперь шаг в сторону и маленький ликбез по тому, как можно управлять качеством данных этого большого информационного пирога.
С одной стороны, можно не трогать источники данных и работать с конечным информационным продуктом, что обычно получается на выходе. К примеру, как это делают аудиторы, когда работают и проверяют финансовую отчетность и данные, на основании которых она строится.
С другой стороны, можно исправлять данные там, где они появляются, то есть, в самих системах. Или исправлять до того момента, пока они не появятся. Например, ограничить ввод данных и задать определенные рамки для информации[139].
Разница между этими принципиальными подходами заключается только в стоимости усилий. Оказалось, что стоимость усилий контроля в конце цикла какого-то длинного процесса кратно выше, чем стоимость контроля на начальных этапах. Происходит это из-за того, что анализ проблем осуществляется в конце, и требуется много дополнительного времени для раскопок причин, которые обычно могут рассказать, что пошло не так.
Если, скажем, стоимость проверки в конце при формировании финансовой отчетности стоит тысячу рублей, то стоимость контроля на первых этапах будет стоить не больше десяти рублей. Поэтому при плохой работе внутренних контролей внешний аудит обычно стоит много денег, потому что аудиторам приходится раскапывать много информации, – почему все плохо в цифрах.
Работать с качеством данных и контролировать их на первых этапах можно несколькими путями. Можно задать тот самый коридор допустимых значений, которые, к примеру, не позволяют ввести несуществующий адрес.
Во втором случае все работает наоборот. Решения допускают ввод любого значения, чтобы потом некоторое внутреннее решение по тому или иному домену само разобрало данные с использованием различной сложной логики и предложило правильный вариант. Если я ввел несуществующий адрес, система сможет найти самый ближайший аналог или экземпляр похожего адреса, который существует в реальности, а дата-стюард уже согласует финальное значение.
Да, именно так, решения сами по себе без дата-стюардов не работают, то есть нельзя автоматизировать всеми возможными средствами вокруг все возможные ошибки.
Самыми эффективными считаются гибридные подходы. Они объединяют первые подходы с заранее невозможным вводом несуществующих и невозможных данных и с определенным допущением свободны со стороны пользователя ввести все, что он считает правильным. Пример с почтовыми индексами это наглядно отражает. В базах данных они по-прежнему некорректные, поэтому пользователя просят дополнительно в свободной форме ввести его.
Первый подход называется «децентрализованным» контролем качества данных[140], а второй, когда задаются значения, называется «централизованным»[141].
Домен «Клиенты» – вся информация, которая касается наших клиентов: их ФИО, дата рождения, контактные данные, сегменты, в которые определил их маркетинг, выводы, которые сделал комплаенс, и так далее. Все это будет внутри домена «Клиенты».