Вот конкретный пример. Консультировать человека по поводу объема накоплений, который позволит безбедно существовать после выхода на пенсию, трудно, поскольку такой расчет будет обусловлен многими неизвестными. В каком состоянии будет экономика через пять или через десять лет? Насколько вырастут цены на энергоносители и какие новые источники энергии появятся? Каковы будут потребности человека в услугах здравоохранения, если он непредсказуемо заболеет? Все эти факторы окажут непосредственное влияние на финансовое положение будущего пенсионера, но информации о них крайне мало. Человек не сможет существенно влиять на них, даже если получит ответы от некоего оракула. Но зато он может проиграть несколько сценариев и посмотреть, какие последствия могут повлечь решения, которые он способен принимать. Поэкспериментировав с параметрами модели, например с макроэкономическими условиями и структурой пенсионных накоплений, он может оценить вероятность различных вариантов и, возможно, сделать вывод о наиболее комфортном из них, который, возможно, будет далек от первоначального представления. Нам нужно поручить инфопереработчикам создать такие инструменты многовариантного анализа и дать нам доступ к ним.
Многовариантный анализ полезен во многих областях жизни. Вообразите себя выпускником школы, которого принимают и в Гарвард, и в Стэнфорд. Какой из университетов выбрать? И как принимать решение? В 2014 году социальная сеть LinkedIn запустила сервис University Pages, который анализирует огромный массив размещенных на сайте резюме, чтобы выяснить, где работают выпускники определенного университета и как складываются их карьеры. Такая «обогащенная» информация может помочь принять решение на основе многовариантного причинно-следственного анализа, сфокусированного как на изначальных допущениях (какой университет), так и на результатах (вероятная карьера). Если у будущего студента уже есть карьерный ориентир (например, пойти работать в Google, McKinsey, Monsanto или Всемирный фонд дикой природы), он может проверить, отличает ли выпускников данного университета необычно высокая вероятность устроиться на работу к определенному работодателю. Можно посмотреть, какие университеты являются главными поставщиками кадров для определенных профессий, включая такие увлекательные занятия, как консультант общественных организаций, сценарист телесериалов или инженер по керамике. Можно поэкспериментировать с фильтрами, чтобы выяснить, какие специальные курсы, помимо основных общеобразовательных, увеличивают шансы попасть на желаемую работу после выпуска[422]
.Как и во многих ситуациях выбора, планирование пенсионных накоплений и выбор высшего учебного заведения подразумевают, что придется чем-то поступиться. Часто люди не знают, насколько сильно им что-то нужно, до тех пор пока их не заставят отказаться от этого. Именно рассматривая альтернативы, мы приходим к пониманию того, какие результаты устраивают нас больше, а какие – меньше. Экспериментируя с настройками, люди получат возможность заранее оценить предстоящие варианты. Право на эксперимент открывает новые просторы для обоснования наших решений.
Как и с правами на изменение, размытие и эксперимент, право на перенос имеет целью расширение свободы выбора. В предыдущей главе я утверждал, что право доступа к данным есть нечто большее, чем право видеть свои биты и байты. Это право увидеть информацию в нужном и понятном виде, например в сравнении с агрегированными данными или эталонными значениями. Для целей разумной прозрачности надо иметь возможность интерпретировать свои данные. На основании права доступа можно потребовать от инфопереработчика предоставить копию своих данных[423]
, но в подавляющем большинстве случаев это не принесет большой пользы в отсутствие возможности обработать их где-то еще. Полноценная свобода выбора означает, что вы можете свободно пользоваться своими данными – как хотите и где хотите. В этом заключается фундаментальный смысл права на перенос.