Пользуясь алгебраическими правилами, можно было бы легко подсчитать число возможных комбинаций из перечисленных в таблице характеристик реакторов. Столько, казалось бы, должно быть и типов реакторов. На самом деле это не так. Некоторые комбинации невозможно осуществить, поскольку входящие в них характеристики взаимно исключают друг друга. Например, в реакторе, работаю щем на быстрых нейтронах, не нужен замедлитель нейтронов, а вода в таком реакторе не может быть использована в качестве теплоносителя, так как она замедляет нейтроны. В таком реакторе замедлителем могут быть только расплавленные металлы (натрий, калий, ртуть), так как они плохо замедляют нейтроны.
Однако даже если исключить из алгебраически возможного числа комбинаций число комбинаций, невозможных по физическим причинам, то и тогда число возможных типов реакторов будет довольно велико — от двух до трех десятков. И, к сожалению, об экономичности и надежности в работе большинства из них нельзя судить до тех пор, пока они не будут построены и испытаны. Кроме того, в разных странах у ученых существуют свои взгляды на перспективность того или иного реактора. Поэтому и наблюдается в настоящее время такое большое разнообразие в типах реакторов.
Время покажет, какие из типов реакторов окажутся наиболее жизнеспособными. Тогда на них и будут ориентироваться при широком развитии ядерной энергетики.
Заманчивая цель
Вспомним принципиальную схему современной атомной электростанции. В ядер ном реакторе в результате цепной реакции выделяется тепло. Это тепло отводится теплоносителем от реактора и в турбине превращается в механическую энергию ротора турбины. Ротор турбины вращает ротор генератора, который и вырабатывает электрический ток.
Три вида электростанций — гидростанция, атомная и тепловая.
Все-таки это сложно. Много промежуточных ступеней превращения энергии: атомная в тепловую, тепловая в механическую, механическая в электрическую.
А нельзя ли проще? Прямо из атомной энергии получить электрическую? Тогда не будет громоздких и сложных агрегатов, дорогостоящего оборудования. Из реактора будут прямо идти провода. Вот так:
Просто, не правда ли? И такая принципиальная возможность непосредственного превращения атомной энергии в электрическую имеется.
Например, установлено, что некоторые химические соединения урана, как карбид урана, при нагревании начинают испускать электроны. Но ведь уран является ядерным горючим, и если в нем протекает цепная реакция, он сильно нагревается. Таким образом, если карбид урана поместить в электрически изолированную металлическую капсулу с откачанным из нее воздухом, а также капсулу расположить в реакторе, то испускаемые нагревающимся карбидом урана электроны будут собираться металлической капсулой. Если соединить карбид урана (катод) и стенки капсулы (анод) внешней электрической цепью, то в ней появится электрический ток. Вот и все.
Конечно, осуществить такое превращение чрезвычайно трудно, но все-таки легче, чем осуществить управляемую термоядерную реакцию. Этому способу получения электроэнергии учеными уделяется сейчас большое внимание. Проведены уже первые обнадеживающие опыты. Имеются и другие способы непосредственного преобразования атомной энергии в электрическую. И надо думать, что создание атомных электростанций, работающих по такому принципу, явится делом недалекого будущего.
Все дальше в глубь атома
В марте 1961 г. произошло одно очень знаменательное событие: исполнилось пять лет работы Объединенного института ядерных исследований.
В небольшом подмосковном городке Дубне расположился этот крупнейший научный ядерно-физический центр. Там среди сосен векового леса высятся здания лабораторий и уникальных установок, уютные коттеджи и жилые дома ученых. Здесь живет и работает значительный отряд выдающихся ученых-физиков всего мира. В прекрасно оборудованных лабораториях рука об руку трудятся ученые стран демократического лагеря.
Задачи, стоящие перед институтом, сложны и многообразны. Но основной девиз работ института — дальше в глубь атома! Центр тяжести научной работы института сосредоточен на изучении элементарных частиц и физических процессов, происходящих с элементарными частицами высоких энергий. Сейчас это передний фронт исследований тайн атома.
Ученым института приходится иметь дело с совершенно новыми явлениями и закономерностями и с необычайно малыми масштабами измерений. Невообразимо мал атом. А ученым приходится иметь дело с размерами в сто тысяч раз меньшими! Сколько же ухищрений, изобретательности и скрупулезной точности требуется при проведении подобных измерений.