1. Супервторичная структура типа -бочонка. Она действительно напоминает бочонок, где каждая -структура расположена внутри и связана -спиральным участком цепи, находящимся на поверхности. Характерна для некоторых ферментов – триозофосфатизомеразы, пируваткиназы.
2. Структурный мотив «-спираль – поворот – -спираль». Обнаружен во многих ДНК-связывающих белках.
3. Супервторичная структура в виде «цинкового пальца». Характерна также для ДНК-связывающих белков. «Цинковый палец» – фрагмент белка, содержащий около 20 аминокислот, в котором атом цинка связан с радикалами четырех аминокислот: обычно с двумя остатками цистеина и двумя – гистидина.
4. Супервторичная структура в виде «лейциновой застежки-молнии». Объединение протомеров или отдельных белков в комплексы иногда осуществляется с помощью структурных мотивов, называемых «лейциновая застежка-молния». Примером такого соединения белков могут служить гистоны. Это ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот – аргинина и лизина. Молекулы гистонов объединяются в комплексы с помощью «лейциновых застежек», несмотря на то, что все мономеры имеют сильный положительный заряд.
Содержание типов вторичных структур в разных белках неодинаково.
По наличию -спиралей и -структур глобулярные белки можно разделить на 4 категории:
1. К первой категории относятся белки, в структуре которых обнаружена только -спираль. Это миоглобин, гемоглобин.
2. Ко второй категории относят белки с -спиралями и -структурами. Характерные сочетания -спиралей и -структур обнаружены во многих ферментах: лактатдегидрогеназа, фосфоглицераткиназа.
3. В третью категорию включены белки, имеющие только -структуру. Сюда относятся: иммуноглобулины, фермент супероксиддисмутаза.
4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное количество регулярных вторичных структур.
Третичная структура белка – пространственная ориентация полипептидной цепи или способ ее укладки в определенном объеме.
В зависимости от формы третичной структуры различают глобулярные и фибриллярные белки. В глобулярных белках чаще преобладает -спираль, фибриллярные белки образуются на основе -структуры.
В стабилизации третичной структуры глобулярного белка могут принимать участие:
1. водородные связи спиральной структуры;
2. водородные связи -структуры;
3. водородные связи между радикалами боковых цепей;
4. гидрофобные взаимодействия между неполярными группами;
5. электростатические взаимодействия между противоположно заряженными группами;
6. дисульфидные связи;
7. координационные связи ионов металлов.
Четвертичная структура белка – способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или различной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.
Четвертичная структура характерна для белков, состоящих из нескольких субъединиц. Взаимодействие между комплементарными участками субъединиц в четвертичной структуре осуществляется с помощью водородных и ионных связей, ван-дер-ваальсовых сил, гидрофобных взаимодействий. Реже возникают ковалентные связи.
Во-первых, наличие субъединичной структуры позволяет «экономить» генетический материал. Для олигомерных белков, состоящих из идентичных субъединиц, резко уменьшается размер структурного гена и, соответственно, длина матричной РНК.
Во-вторых, при сравнительно небольшой величине цепей уменьшается влияние случайных ошибок, которые могут возникнуть в процессе биосинтеза белковых молекул. Кроме того, возможна дополнительная выбраковка «неправильных», ошибочных полипептидов в процессе ассоциации субъединиц в единый комплекс.
В-третьих, наличие субъединичной структуры у многих белков позволяет клетке легко регулировать их активность путем смещения равновесия «ассоциация-диссоциация» в ту или иную сторону.
Наконец, субъединичная структура облегчает и ускоряет процесс молекулярной эволюции. Мутации, приводящие лишь к небольшим конформационным изменениям на уровне третичной структуры за счет многократного усиления этих изменений при переходе к четвертичной структуре, могут способствовать появлению у белка новых свойств.
Фолдинг