Высокопроизводительных устройств, создающих аэрозоль нужной дисперсности на территориях, сопоставимых с площадью поражения тактическим ядерным бое-припасом, не было. Один из простейших способов диссеминирования биологических поражающих агентов — распыление рецептуры биологического агента при помощи одноканального сопла, использующего энергию газа. Однако для такого сопла, чтобы добиться эффективности на уровне 5 %, требуется давление минимум 300 фунтов на кв. дюйм (21 кг/см2
) (Patric W. III., 2001). Но уже при давлении в десять раз меньшем количество выживших после диспергирования бактерий ничтожно (Rosebury Т., 1947). Увеличение давления в распылителе приводит к возрастанию эффективности распыления; в то же время клетки бактерий подвергаются воздействию срезывающего усилия. По мере дальнейшего увеличения давления возрастает количество погибающих клеток под действием срезывающего усилия. Гибель бактерий происходит быстрее, чем увеличение эффективности распыления (Hatch М. Т., Wolochow Н., 1971).Такая же закономерность обнаружена при имитировании применения сухих ре-гдтур поражающих агентов БО. В табл. 1.6 показана взаимосвязь между жизнеспо-::остью агента и размерами частицы на примере сухих рецептур
Размер аэрозольных частиц | Кол-во SM на частицу аэрозоля | Кол-во жизнеспособных SM на частицу аэрозоля | Частота присутствия жизнеспособных клеток SM на 1000 частиц аэрозоля
0,8 | 1,8 | 0,001 | 0,5
1,3 | 4,2 | 0,01 | 2,6
3,0 | 18,0 | 0,2 | 15,6
6,5 | 73,0 | 2,5 | 38,0
11,5 | 195,0 | 7,7 | 14,0
16,0 | 350,0 | 11,0 | 60,0
Если аэрозоль содержит частицы размером 0,8 мкм, то на каждую из них приходится в среднем 1,8 клетки SM, но их выживаемость составляет 0,001 %. При увеличении размеров частиц увеличивается и выживаемость клеток в частицах аэрозоля, однако они теряют способность проникать в глубокие отделы легких и вызывать инфекционный процесс у людей и животных (Patric W. III., 2001).
Оказалось, что практически
Казалось бы, можно посчитать примерный размер частиц диспергируемой жидкой рецептуры, с учетом их возможного «высыхания». Степень обезвоживания частицы связана с соотношением давления паров воды на поверхности частицы и в воздухе и находится в линейной зависимости. При 40 % относительной влажности равновесие достигается к моменту, когда частица утрачивает 85 % исходного веса сорбированной воды. При 97 % относительной влажности потеря составляла не более 10 %.
Но обезвоживание частиц аэрозоля приводит не только к уменьшению их размерь, но и к изменениям в структуре протеинов бактериальной клетки, в первую очередь ферментов. Не исключается и другой механизм губительного действия обезвоживания, связанный с повышением концентрации токсических веществ в клетке. Следовательно, чем ниже относительная влажность, тем выше скорость гибели микробной клетки. Частицы аэрозоля при низкой относительной влажности воздуха приобретают нужный размер 3–5 мкм, однако это сопровождается гибелью части микроорганизмов, в них содержащихся (Haykawa J., Рооп С.,1965). Чем крупнее частица аэрозоля, тем больше воздействие происходящих в ней физических процессов на биологический агент. Просчитать такие закономерности можно при подготовке опытов в полигонных условиях. В условиях боевого применения БО трудно ожидать, что относительная влажность воздушной среды на территории, по которой оно применяется, будет соответствовать заранее рассчитанной.
В 1959 г. S. Webb установил, что в течение первой секунды после распыления гибнет подавляющее число микроорганизмов. В последующие девять секунд скорость их инактивации значительно уменьшается. В дальнейшем, в течение ближайшего часа и позже, процесс отмирания микробов идет очень медленно (цит. по Огаркову В. И… Гапочко К. Г., 1975).