Подчеркнем, что пионерами в исследовании важных вопросов проблемы биологической роли репарации ДНК были многие отечественные радиобиологи. Здесь я акцентировал внимание на результатах собственных исследований, т. к. они имеют прямое отношение к основам старения и долголетия; кроме того, излагая их, я стремился показать логику развития и частично "кухню" исследований.
Что же касается идеи нестабильности ДНК, природы и количественной оценки этой нестабильности, то наряду с нашими трудами пионерскими нужно признать работы шведов Т. Линдаля и Б. Найберга. Не придавая существенного значения собственному приоритету, все же отмечу, что и первые количественные оценки спонтанной нестабильности ДНК были сделаны нами на несколько месяцев раньше (на IX Международном конгрессе геронтологов, состоявшемся в начале июня 1972 года), чем вышла первая работа шведских ученых (в конце сентября 1972 года). Столь близкие сроки независимого рождения сходных концепций заставляют вспомнить давнишнюю поговорку о том, что идеи, когда приходит их срок, "носятся в воздухе".
А теперь пример, поясняющий, какое конкретное практическое значение имеет понимание закономерностей спонтанного (только теплового) повреждения ДНК. Но, чтобы он был до конца ясен, придется сделать снова краткий экскурс в теорию.
Надеюсь, приведенное чуть раньше сравнение частот спонтанных повреждений ДНК с частотами спонтанных мутаций или с частотами повреждений ДНК, индуцируемых фоновым ионизирующим излучением, убедило читателя: все существующие фундаментальные концепции эволюции нуждаются в учете спонтанной нестабильности ДНК. Ведь спонтанные мутации или мутации, индуцируемые фоновым излучением, рассматривают как основные причины генетической изменчивости и, следовательно, как основу эволюции.
Сегодня мы понимаем, что частота спонтанных повреждений ДНК в тысячи и даже миллионы раз больше интенсивности этих "классических" факторов изменчивости.
Как гены примитивных клеток, не имевших мощных систем репарации (обнаруживаемых теперь у всех клеток), могли выполнять свои функции и достаточно точно редуплицироваться? Какими способами еще, кроме систем репарации ДНК, природа сумела сохранять генетическую информацию, несмотря на интенсивное спонтанное повреждение ее хранительницы — ДНК?
Казалось бы, самый простой способ — понижение температуры существования животной клетки. Но ведь для нормального функционирования многих ферментов, в том числе, вероятно, и ферментов, участвующих в репарации ДНК, нужна физиологическая температура. У млекопитающих это, как правило, примерно 37 °C. Однако при такой температуре мужские половые клетки (гаметы) на последних стадиях развития (дифференцировки) начинают терять способность к репарации ДНК, а на конечной стадии дифференцировки мужская гамета (сперматозоид) лишается большинства ферментов, кроме тех, которые ей нужны для движения — поиска яйцеклетки, проникновения в нее и передачи ей своего генома.
Но мы теперь знаем: если способность к репарации ДНК резко снизить, то спонтанные повреждения ДНК будут накапливаться со скоростью, довольно сильно (см. рис. 5) зависящей от температуры. Даже небольшое (хотя бы на несколько градусов) понижение или повышение температуры должно привести к существенному (на 10 % или на несколько десятков процентов) снижению или повышению частоты возникновения спонтанных повреждений ДНК.
Эти количественные оценки позволяют понять, почему орган (мошонка), где образуются и хранятся мужские гаметы, в процессе эволюции человека оказался выведенным из брюшной полости — в связи с этим температура в тканях мошонки на два-три градуса меньше температуры внутренних органов.
Рассмотренная проблема, конечно, теоретическая, но из нее вытекает вполне практический (по крайней мере для будущих отцов) вопрос: стоит ли злоупотреблять перегревом в парильной или в финской бане, когда температура окружающей среды значительно больше 35 °C, если это может привести к возрастанию скорости спонтанных повреждений ДНК в половых клетках? И простая рекомендация, позволяющая снизить генетические риски у будущих поколений людей, состоит в том, чтобы в течение определенного срока до зачатия будущий отец избегал воздействия на мошонку температуры, значительно превышающей 35 °C. Точно определить этот срок, конечно, нельзя; но он должен превышать тот промежуток времени, в течение которого происходит физиологическое обновление мужских гамет в мошонке мужчин.