Читаем Биологические основы старения и долголетия полностью

Но возвратимся к проблеме спонтанных повреждении ДНК. Очевидно, что для понимания молекулярных механизмов старения принципиальное значение имеет вопрос о том, как изменяются с возрастом два рассмотренных фундаментальных, диалектически противоположных процесса возникновение спонтанных повреждений и их репарация. Результаты нескольких исследований (подробнее о них будет рассказано в главе IV) позволяют полагать, что эффективность процесса репарации в старых клетках может быть меньше, чем в молодых. Кроме того, есть основания считать, что нарушение слаженности в работе ансамбля репарирующих ферментов приводит не к залечиванию, а наоборот, к интенсивному повреждению ДНК. Ведь мы видели (см. рис. 6), что на определенном этапе должно происходить своевременное переключение процесса репарации с этапа выщепления оснований на этап синтеза ДНК — заполнения имеющейся в ней бреши. Если же такое переключение почему-то задерживается (например, в клетке понижена концентрация ДНК-полимер азы), и в этом случае экзонуклеаза не может "вовремя остановиться", то процесс деградации ДНК должен стать не физиологическим, а патологическим — процесс репарации "переходит" в свою противоположность, т. е. развивается повреждение генома.

Таким образом, накопление повреждений в геноме стареющих клеток происходит не только вследствие нарушения равновесия между процессами возникновения спонтанных повреждений ДНК и их репарации, но и потому, что уменьшается репарируемость повреждений.

Для того чтобы повреждение могло быть репарировано, оно должно быть доступно для действия репарирующих ферментов. Но ДНК в хроматине ядра находится в упакованном состоянии. Возникающие в некоторых участках генома повреждения ДНК с трудом могут быть "найдены" ферментами репарации. Это особенно относится к тем участкам генома, которые обычно неактивны, синтез РНК на которых не происходит. Если облучить клетку ультрафиолетовым излучением и определить скорость репарации повреждений ДНК, индуцированных этим излучением, то оказывается, что именно в таких участках повреждения ДНК остаются длительное время невосстановленными. Казалось бы, поскольку эти гены функционально неактивны, то и накопление в них повреждений безразлично для клетки. Однако так обстоит дело только до определенной поры. Если клетка вступает в фазу деления, то на таких "испорченных" матрицах будет синтезироваться ДНК с неправильной последовательностью оснований или ДНК, вовсе не содержащая оснований в участке, комплементарном "испорченной матрице". Если в результате повреждений ДНК произойдет нарушение синтеза и распределения между дочерними клетками той пары хромосом, в состав которой такая ДНК входит, клетки могут погибнуть.

Повреждения, возникающие в функционально инертных генах, должны "проявиться" также в тех случаях, когда возникает потребность в их активации, например при гормональной и субстратной индукции синтеза белка и при синтезе антител в ответ на поступление в организм чужеродных антигенов. Во всех этих случаях синтезируемые на "испорченных" матрицах ДНК могут быть функционально неактивными или направлять синтез мутантных белков. Следовательно, рассмотренный процесс накопления повреждений ДНК в тех генах, которые вследствие относительно прочной связи с белками репрессированы (временно или постоянно) и малодоступны для репарации, очевидно, является важной причиной снижения способности старых клеток к индукции синтеза ферментов и антител. Но ведь ранее мы пришли к заключению, что такого рода возрастные изменения определяют уменьшение функциональной способности различных органов, являются характерным признаком старения всего организма. Значит, теперь мы можем определить уровни старения и связи между ними — от молекул до организма.

Существует еще одно обстоятельство, которое делает весьма опасным длительное сохранение в клетках повреждений ДНК. Участки ДНК, содержащие изменения в структуре, вызванные различными повреждающими воздействиями (будь то тепло, ионизирующее или ультрафиолетовые излучения или химические вещества), обладают повышенным "сродством" не только к ферментам, участвующим в репарации этих повреждений, но и к другим белкам. Причем в последнем случае может образоваться химическая, связь (сшивка) между модифицированным участком ДНК и белком (см. рис. 1). После этого клетке труднее провести репарацию ДНК. Более того, такая сшивка ДНК — белок может быть нерепарируемой вообще, что означает необратимое нарушение или, скорее, выключение функции гена.

Ведь независимо от того, в каком синтезе участвует этот ген — в синтезе ДНК или РНК, для обоих этих процессов необходимо, чтобы ферменты, их катализирующие (соответственно ДНК- и РНК-полимераза), продвигались, "скользили" вдоль матрицы. Когда ферменты достигнут участков ДНК, содержащих сшивки ДНК с белком, весьма вероятно, что их продвижение будет остановлено, и, следовательно, редупликация гена, или его транскрипция, окажется незавершенной. Рассмотренный механизм выключения функции гена мы и называем инволюционной репрессией.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже