Читаем Биологические основы старения и долголетия полностью

В предыдущем издании этой книги автор мог привести лишь один результат изучения изменений ДНК клеток в процессе их старения. Как же продвинулось исследование этого вопроса за прошедшие 11 лет?

Прежде всего обратим внимание на то, что в результате того или иного воздействия на ДНК в ней могут возникать самые различные повреждения, причем в самых различных количествах. Естественно, это очень затрудняет изучение изменений ДНК при старении. Ведь большинство типов повреждений, очевидно, даже к старческому возрасту накапливается в геноме в очень малых относительных количествах (по сравнению с чувствительностью даже самых совершенных методов анализа структуры ДНК). Поэтому, чтобы определить характер повреждений ДНК, возникающих и накапливаемых в геноме клеток при их старении, необходимо теоретически предвидеть наиболее существенные из этих типов повреждений. Об одном способе такого предвидения мы уже рассказали — он состоит в анализе биофизических свойств ДНК и механизмов ее спонтанной (тепловой) нестабильности.

Другой путь — проанализировать характер повреждений ДНК, индуцируемых ионизирующим излучением или химическими веществами, и попытаться определить общие механизмы возникновения этих повреждений. Если есть теоретические основания полагать, что такие механизмы "работают" и в неповрежденной клетке, то можно ожидать, что и в процессе старения с относительно большой вероятностью можно обнаружить накопление повреждений ДНК сходного типа.

Один из наиболее изученных продуктов, образуемых в ДНК после облучения клеток ионизирующей радиацией или в результате воздействия на нее химическими мутагенами, — это гликоль тимина или тимидина. Такие продукты образуются в результате окислительной деструкции ДНК. Но различные вещества (ОН·, , Н2О2 и т. д.), способные индуцировать процесс окислительной деструкции ДНК, образуются и в процессе нормального метаболизма. Следовательно, можно было ожидать, что такие продукты возникают и в ДНК необлученной клетки. Косвенно об этом свидетельствует выделение этих продуктов с мочой. Так, по данным, полученным методом хроматографии, ежесуточно каждый человек выделяет с мочой в среднем около 32 нМ этих продуктов. У экспериментальных крыс выделение гликоля тимина или тимидина в 15 раз более интенсивно, чем у человека (если пересчитать количество этих продуктов на 1 кг массы тела).

Максимальная (видовая) продолжительность жизни человека, по мнению многих исследователей, составляет примерно 100 лет. У лабораторных крыс она варьирует в зависимости от линии и достигает 4 лет. Иными словами, человек примерно в 25 раз долговечнее, чем крыса. Таким образом, между интенсивностью выделения гликоля тимина и продолжительностью жизни, возможно, существует обратно пропорциональная зависимость.

Модифицированные нуклеотиды или основания сначала выделяются во внутриклеточное пространство в процессе репарации ДНК с помощью ферментов, вырезающих поврежденные участки ДНК. Лишь затем они или продукты их метаболизма выводятся сначала из клетки, а потом и из организма. Но отсюда следует, что, чем больше выводится этих продуктов с мочой, тем больше их образуется и из ДНК клетки. Стало быть, открывается возможность на основании анализа продуктов метаболизма ДНК в моче делать хотя бы косвенные заключения об интенсивности химической модификации ДНК в клетках и роли таких модификаций в развитии различных болезней (особенно опухолей) и в старении.


Накопление в ДНК клеток человека повреждений первичной структуры


Теперь я расскажу подробнее о результатах исследований, проведенных нами на культивируемых клетках человека. Повреждения ДНК клеток человека были исследованы при старении этих клеток в организме (in vivo), а также вне организма (in vitro). Кроме того, такие повреждения ДНК были сопоставлены с повреждениями ДНК, возникающими при не очень интенсивном прогревании клеток или облучении их ионизирующим излучением. Рассказывая о наших данных, я познакомлю любознательного читателя с некоторыми особенностями изучения повреждений ДНК "щадящим" методом.

Один из основных методов анализа ДНК, использованных нами при исследовании этих вопросов, — метод седиментации ДНК в градиенте щелочной сахарозы. Этот метод уже упоминался (см. с. 27). Мы сразу перейдем к рассмотрению полученных вместе с А. Н. Хохловым данных, делая пояснения методики при изложении результатов.

На рис. 8 представлены седиментограммы ДНК эмбриональных фибробластов и фибробластов, полученных из кожи 91-летнего донора. На графике указано, какой процент ДНК от общей массы ДНК (содержавшейся в клетках, нанесенных на градиент) был в той или иной из фракций (частей), на которые разделяли содержимое центрифужной пробирки после окончания центрифугирования. 1-я фракция соответствовала дну пробирки, 15-я — верху градиента. Это означает, что высокомолекулярные фракции ДНК — первые, низкомолекулярные — последние номера фракций. И следовательно, чем больше седиментограмма сдвинута вправо, тем меньше среднее значение молекулярной массы ДНК, тем больше в ней было разрывов.



Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука