В-четвертых, Мендель наблюдал передачу признака на протяжении НЕСКОЛЬКИХ поколений. Это обстоятельство имело очень важное значение.
В-пятых, Мендель фиксировал количество особей с определенным признаком и тщательно анализировал полученные данные. Количественный анализ имел такое же важное значение, что и наблюдение за признаком в нескольких поколениях.
Читая про эксперименты с горохом, помните, что Мендель не имел понятия о генах, о аллелях, о подавлении одного гена другим и о прочих премудростях генетики. Если уж на то пошло, то генетика началась с его экспериментов.
Вообще-то Мендель исследовал семь пар альтернативных признаков – форму и окраску семян, окраску цветков и их положение на побеге, высоту растения, окраску незрелых бобов и форму зрелых. Но мы ограничимся рассмотрением двух исследований, потому что законы наследования одинаковы для всех признаков (и у всех живых существ, размножающихся половым способом).
Первым делом Мендель скрестил сорта гороха с пурпурными и белыми цветками и получил потомство с пурпурными цветками. Ни одного белого цветка в первом поколении (которое принято обозначать как F1) не было.
Мендель сделал вывод о том, что у гибридов первого поколения проявляется лишь один альтернативный признак – преобладающий, он же доминантный (господствующий). Слабый признак, подавляемый преобладающим (в данном случае – белую окраску цветков) Мендель назвал рецессивным.
Единообразие гибридов первого поколения Мендель назвал правилом доминирования. В наше время оно известна как закон доминирования или первый закон Менделя.[79]
Схема опыления и результатов скрещивания гороха с пурпурными цветками и белыми цветками
Первый закон по-научному называется законом единообразия гибридов первого поколения и в «официальной» формулировке звучит следующим образом: при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов окажется единообразным и будет нести проявление признака одного из родителей.
Тяжеловатая формулировочка, верно? Проще запомнить, что у гибридов первого поколения проявляется только доминантный признак. У кареглазого отца, не имеющего ни одного голубоглазого предка, и голубоглазой матери будут рождаться дети с карими глазами. Только с карими! Если вдруг родится голубоглазый ребенок, то ищите другого отца.
При скрещивании гибридов первого поколения Мендель получил во втором поколении (F2) растения с признаками обоих родителей – как с пурпурными, так и с белыми цветками. Причем во всех сериях экспериментов признаки, будь то окраска цветков или форма семян, во втором поколении распределялись в одной и той же пропорции. 75 % или ¾ от общего числа растений имели доминирующий признак (в данном примере – пурпурную окраску цветков), а 25 % или ¼ часть растений имела рецессивный признак (белую окраску цветков).
Такое распределение признаков среди гибридов второго поколения позволило Менделю сделать вывод относительно того, что рецессивный признак у гибридов первого поколения не исчезает, а всего лишь подавляется доминантным признаком.
Если бы Дарвин обратил внимание на распределение признаков во втором гибридном поколении и задался бы вопросом «почему так происходит?», то он бы не стал придумывать гемммулы. Действительно – о каких геммулах может идти речь, если у родителей с красными цветками часть потомства имеет белые цветки?
Как в организме растения с красными цветками может выработаться геммула белой окраски?
Никак! Она может только спрятаться, затаиться до лучших времен.
Давайте посмотрим, каким образом рецессивный признак проявляется во втором поколении.
Если мы обозначим ген, отвечающий за доминантный признак заглавной буквой «А», а ген, отвечающий за рецессивный признак, прописной буквой «а», то схема первого скрещивания будет выглядеть следующим образом:
АА х аа = Аа + Аа
В половых клетках содержится по одному гену из каждой пары. Пара АА разбивается на два гена А, а пара аа – на два гена а. Соединение А с а дает одну-единственную комбинацию Аа, в которой доминантный ген подавляет рецессивный.
Но во втором поколении при скрещивании особей с генотипами Аа возможны три комбинации отцовских и материнских генов – АА, Аа и
аа. Схематически это можно выразить следующим образом:Аа х Аа = АА
+ Аа + ааДавайте уравняем эту схему-уравнение таким образом, чтобы слева и справа было бы одинаковое количество букв «А» и «а», подобно тому, как уравнивают химические уравнения. Получим следующее:
2
Аа х 2Аа = АА + 2Аа + ааВ ¾ потомства второго поколения проявится доминантный ген (1 часть особей с набором АА и 2 части с набором Аа), а в ¼ – рецессивный (1 часть особей с набором аа).