Читаем Биология в новом свете полностью

Выше мы говорили, что любую функцию, или кривую, можно представить в виде полинома с более или менее большим числом членов и затем охарактеризовать ее с помощью нескольких чисел, а именно констант a0, a1, a2, … an. В n — мерном фазовом пространстве такая кривая сводится к точке. Сдвиг точки означает изменение формы кривой, т. е. изменение вида функции.

Рассмотрим следующие уравнения:

Здесь из полинома выбран только один член. Такое уравнение называют степенной функцией. В общем виде она записывается как у = xn, т. е. у равен x в n-й степени. С изменением значения n изменяется форма всей кривой.

Предположим, степенная функция описывает форму какого-нибудь биологического объекта и величина n связана с определенным свойством объекта подобно тому, как в предыдущей главе величина тела была связана с теплоотдачей. Этот случай напоминает задачу о длине забора для сада. Выяснив сначала математическую зависимость между величиной n и оптимизируемым свойством объекта, методами диференциального исчисления определяют максимум той математической функции, находят оптимальное значение n и, исходя из него, строят оптимальную кривую.

Семейство кривых у = xn. При изменении числа n изменяется форма кривой. Так эволюцию биологических форм в принципе можно представить, изменяя n


Однако здесь нам следует остановиться и подвести некоторые итоги. Математическая функция, описывающая какой-либо закон природы, отражает зависимость одной величины от другой и изображается формулой с характеристическими константами, т. е. числами, определяющими ее характер, изменение этих чисел влечет за собой изменение функции.

Характеристические константы могут быть связаны между собой с помощью другой математической функции, которая обусловливает первую функцию; это "суперфункция", или, как ее называют математики, функционал.

Таким образом, поиск оптимального решения сводится к отысканию функционала и определению его максимума (или минимума). Однако насколько просто описать этот процесс словами, настолько сложно выразить его математически, тем более что, как правило, для этого требуется проанализировать связь между многими изменяющимися величинами.

Рассмотрим конкретный пример. Красные кровяные клетки (эритроциты) человека имеют своеобразный вид. Они похожи на резиновые мячики, вдавленные с двух сторон. Для них такая форма оптимальна, потому что она обеспечивает быструю диффузию кислорода к гемоглобину — пигменту крови, содержащемуся в этих клетках. Но более интересна другая проблема, связанная с формой эритроцитов. В гипотонических растворах, т. е. растворах, содержащих меньше солей, чем кровь, кровяные клетки можно "надуть" — в них проникает вода, и они становятся округлыми. Если их осторожно перенести назад в изотонический раствор, восстанавливается прежняя двояковогнутая форма. Чем же она обусловлена? Почему на поверхности эритроцита не образуются другие вмятины? Вопрос интересен еще и потому, что при некоторых болезнях красные кровяные клетки действительно приобретают аномальную форму. Очевидно, нормальная форма красных кровяных клеток человека является следствием оптимального сочетания многих факторов.

Мы начнем анализ этой проблемы с того, что с помощью соответствующей математической формулы представим форму эритроцита в системе координат. Для этого, конечно, можно было бы найти подходящий полином, однако существует более изящный метод. Математикам известна некая кривая, являющаяся геометрическим местом точек, для которых произведение расстояний до двух заданных точек F1 и F2 есть величина постоянная. По имени получившего ее ученого она названа кривой Кассини. Итак, для каждой точки на кривой Кассини, изображенной на рисунке, должно быть справедливо уравнение p ⋅ q = а, где р и q — расстояния от этой точки на кривой до двух заданных точек F1 и F2. Это уравнение, однако, описывает форму не всей клетки, а только ее поперечного сечения. Форма целой клетки получается вращением ее поперечного сечения вокруг центральной оси.

Кривая Кассини — геометрическое место точек, для которых произведение расстояний до двух заданных точек F1и F2есть постоянная величина. С помощью этой кривой можно описать форму эритроцитов


Таким образом, форму кровяных клеток человека можно охарактеризовать двумя величинами, а именно константой a и расстоянием между точками F1 и F2, обозначенным буквой l. Как только отношение а к l изменится, изменится и форма кривой; следовательно, разбухание клеток можно моделировать изменением этого отношения.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

Голос земли. Легендарный бестселлер десятилетия о сокровенных знаниях индейских племен, научных исследованиях и мистической связи человека с природой
Голос земли. Легендарный бестселлер десятилетия о сокровенных знаниях индейских племен, научных исследованиях и мистической связи человека с природой

Как ученый-исследователь в области биологии, автор этой книги понимает, сколь не защищен и хрупок наш мир, а как активный гражданин и представитель коренного народа потаватоми, не потерявший связи со своими корнями, она чувствует и познает мир способом, который гораздо старше любой науки. В этой книге тесно переплетаются оба подхода к изучению мира – аналитический и эмоциональный, научный и культурологический, – чтобы в итоге найти способы преодоления возрастающего разрыва между людьми и природой. Книга, сотканная из реальных историй и легенд, возвращает людей к диалогу со всем, что зеленеет и растет, со Вселенной, которая никогда не переставала общаться с нами, даже когда мы разучились слышать.В формате PDF A4 сохранен издательский макет.

Робин Уолл Киммерер

Биология, биофизика, биохимия