Как же удается ИМБ внедриться в «масло»? Вспомните, что белки представляют собой линейную цепочку связанных друг с другом остатков аминокислот. Из двадцати различных аминокислот одни представляют собой тяготеющие к воде (гидрофильные) полярные молекулы, а другие – гидрофобные, неполярные молекулы. Та область белковой цепочки, которая составлена из гидрофобных аминокислот, стремится достичь устойчивости в окружении, тяготеющем к жирам, – каким является, например, липидная сердцевина мембраны (см. стрелку на рисунке ниже). Именно таким образом гидрофобные части белка встраиваются во внутренний слой мембраны. Из-за того, что некоторые области белковой цепочки состоят из полярных аминокислотных остатков, а другие – из неполярных, белковая молекула изгибается внутри и снаружи нашего «бутерброда».
Существует масса разновидностей и наименований ИМБ, но все они могут быть подразделены на две функциональные группы:
Как и все прочие белки, о строении которых мы говорили выше, рецепторы имеют активную и неактивную конформацию и переходят от одной к другой, когда меняется их электрический заряд. Когда белок-рецептор связывается с сигналом внешней среды, возникающее в результате перераспределение электрического заряда заставляет белковую цепочку свернуться по-новому, и белок принимает «активную» конформацию. У клетки имеются нужным образом настроенные белки-рецепторы для всех внешних сигналов, которые необходимо улавливать.
Некоторые рецепторы реагируют на сигналы физического характера. Один из таких примеров – эстрогенный рецептор, устройство которого в точности соответствует конфигурации и заряду молекулы белка эстрогена. Когда рядом оказывается молекула эстрогена, рецептор надежно сцепляется с ней, подходя как ключ к замку. Как только это происходит, электрический заряд рецептора перераспределяется, и белок переключается в свою активную конформацию. Аналогичным образом, гистаминные рецепторы по своей конфигурации соответствуют молекулам гистамина, инсулиновые рецепторы – молекулам инсулина и т. д.
«Антенны» рецепторов способны также улавливать колебания различных энергетических полей – света, звука и радиоволн. При этом они вибрируют наподобие ножек камертона, и если энергетические колебания во внешней среде оказываются в резонансе с антенной рецептора, то в нем происходит перераспределение заряда и изменение конфигурации. Я остановлюсь на этом более подробно в следующей главе, а сейчас хочу только подчеркнуть, что поскольку белки-рецепторы могут воспринимать энергетические поля, то нам необходимо отказаться от представления о влиянии на физиологические процессы в клетке
Белки-рецепторы – штука замечательная, но непосредственно они на поведение клетки не влияют. Проинформированная рецепторами о внешних сигналах, клетка должна еще предпринять адекватные ответные действия для поддержания своей жизнедеятельности. Это задача белков-эффекторов. Тандем рецепторов и эффекторов представляет собой механизм типа «раздражение – отклик», наподобие рефлекторной реакции во время медосмотра. Когда доктор ударяет вас по колену молоточком, сенсорный нерв получает сигнал и тут же передает информацию моторному нерву, который и заставляет ногу вздрагивать. По своим функциям рецепторы мембраны эквивалентны сенсорным нервам, а белки-эффекторы – моторным нервам, непосредственно вызывающим действие. В целом комплекс рецептор-эффектор действует как коммутатор, переводя сигналы из окружения клетки в ее поведение.
Значение ИМБ ученые осознали только за последние двадцать лет. Оно оказалось настолько велико, что изучение их функционирования превратилось в отдельное научное направление под названием «сигнальная трансдукция». Исследователи сигнальной трансдукции заняты тем, что пытаются классифицировать сотни сложнейших информационных путей, лежащих между восприятием мембраной сигналов окружающей среды и активацией белков, отвечающих за поведение клетки. Изучение трансдукции выводит клеточную мембрану на авансцену – точно так же, как эпигенетика устанавливает особую роль хромосомных белков.