Читаем Биотехнология: что это такое? полностью

Корова и человек на двух половинах хлеба

Сегодня, к сожалению, чтобы «погасить» несбалансированность получаемых кормов по составу аминокислот и особенно дефициту белка, колхозы и совхозы страны для получения единицы животноводческой продукции почти вдвое перерасходуют установленную норму зерна. Вот и выходит, что животноводство потребляет добрую половину всего урожая зерновых. Между тем, включение в рацион животных тонны кормовых дрожжей позволяет экономить 5—7 тонн зерна, 6—8 тонн молока (если те же дрожжи использовать на откормы телят и поросят) или 1,5 тонны сухого обезжиренного молока.

Какое значение для повышения эффективности использования всех кормов имеют добавки незаменимых аминокислот, можно судить хотя бы по такому факту. Даже десятые доли процента лизина увеличивают кормовую ценность пшеницы в полтора-три раза, овса — в полтора, кукурузы — в два, проса — в восемь раз.

Еще больший эффект может быть достигнут при комплексном применении в качестве балансирующих добавок и других кормовых препаратов незаменимых аминокислот, таких, как треонин, триптофан, глутаминовая кислота.

Разумеется, я мог бы привести бесчисленное множество примеров, подтверждающих высочайшую результативность биотехнологии. Например, именно с ней связаны перспективы широкого использования иммобилизованных (присоединенных к какой-либо инертной матрице, лишенных подвижности) ферментов для получения в промышленных масштабах различных продуктов биосинтеза. Но зачем фермент понадобилось закреплять, или, как говорят химики, «пришивать», пожалуй, стоит объяснить.

Дело в том, что все ферменты — белки, служащие биологическими катализаторами химических реакций в организме. Недаром биохимики, подтрунивая над поэтами, прославляющими венец творения природы — человека, любят говорить, что он — всего лишь котел, в котором «варятся», вступая в разнообразные реакции, около двух тысяч ферментов.

Наука давно стремилась получить в чистом виде те или иные ферменты. Решение таких задач означало бы и решение многих проблем микробиологической, фармацевтической, пищевой промышленности. Но как только ученые научились выделять ферменты нужной чистоты и в нужных количествах, выяснилось, что применять их в производстве неудобно и, как ни странно, невыгодно: изъятый из живой клетки фермент оказывался на удивление недолговечным. К тому же его нельзя было использовать вторично. Тогда-то фермент и решили «пришить» химически к какой-либо матрице, дабы удержать на месте. В качестве последней чаще всего используют полимеры. А это значит, что создание новых материалов

я веществ является одним из стимулов, ускоряющих приоритетные направления НТП. В том числе и в биотехнологии, значение которой в интенсификации самых разных производств возрастает из года в год.

Вот и получается, что успех одного научного направления определяется достижениями другого, результативность одной отрасли народного хозяйства целиком зависит от эффективности другой, вроде бы с ней даже и не смежной.

Например, создание иммобилизованных ферментов не только вывело инженерную энзимологию из критической ситуации, но и решило еще одну важнейшую проблему. Один из основателей этого направления в СССР академик А. А. Баев рассказывает так: «Вслед за ферментами появились возможности использовать и иммобилизованные живые клетки — клетки тканей животных и растений или даже целые одноклеточные организмы. Эти миниатюрные живые фабрики на привязи в отличие от ферментов осуществляют уже целую совокупность химических реакций, которые свойственны этой клетке. Таким образом, например, можно синтезировать некоторые важные органические кислоты».

И, разумеется, не только их. Смею утверждать, что каждое направление в биотехнологии, реализованное в производстве, революционизирует его, открывая такие возможности, о существовании которых прежде нельзя было и мечтать. Те же биологические средства защиты растений многократно окупают каждый рубль, вложенный в их производство. Другими словами, результаты поиска ученых оборачиваются при практическом его внедрении десятками, сотнями миллионов рублей прибыли. Особенно если этот поиск поддержан и на местах, если здесь просчитают, оценят его выгоды. Ведь что греха таить, мы иногда просто-напросто проходим мимо тех резервов, которые не только можно, но и необходимо использовать. Взять хотя бы проблему получения биогаза. Ее решение могло бы внести достойный вклад в выполнение Энергетической программы страны и гарантировался бы колоссальную прибыль сельскому хозяйству, одновременно разрешив и экологическую проблему.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Биология, биофизика, биохимия / Политика / Биология / Образование и наука / Культурология