Читаем Биотехнология: что это такое? полностью

Совершенно верно. «Мавр сделал свое дело, мавр может уйти», и мРНК расщепляется на фрагменты, которые при следующей транскрипции, осуществляемой клеткой, вновь могут быть использованы. Недаром молекулы мРНК очень часто сравнивают с перфокартой, вложенной в станок или в машину с программным устройством, а рибосому — с тем самым станком или машиной, работающей в строгом соответствии с закодированной на перфокарте информацией. Так что ошибки полностью исключаются.

Так, в чем же, казалось бы, дело? Самый рациональный и безошибочный синтезатор известен — живая клетка, система обучения ее продуцированию нужного белка — соматотропина — разработана (об этом уже говорилось чуть выше: в ДНК кишечной палочки нужно внедрить человеческий ген, отвечающий за наработку гипофизом ростового гормона), остается только этот ген «изъять» из клетки и приступить к конструированию нужного нам механизма. Но все дело в том, как именно извлечь нужный ген. Только его, и никакой другой, а он ведь в ДНК не один.

И вновь пришлось воспользоваться тем, что ранее уже было понято и найдено — уникальной способностью раковой клетки к бесконтрольному размножению, а значит и бесконечно интенсивной наработке белка.

Распознать степень клеточной активности несложно. Если в клетке наличествует в больших количествах мрНК — значит, синтез белка идет активно. А поскольку речь в эксперименте шла о наработке соматотропина, то взяли крохотный кусочек опухоли гипофиза. Затем с помощью специальных веществ ее разрушили, вплоть до распада мРНК, и из капельки образовавшейся жидкости выделили очень чистую мРНК.

Разумеется, и само выделение мРНК, и очистка вещества от всевозможных примесей — все это сложные процессы, требующие и навыков и знаний. Так или иначе, но в руках исследователей оказался раствор чистой мРНК, а это уже равнозначно получению слепка с «ключа», открывающего заветную дверь. Таким ключом в клетке, как вы помните, может быть только ДНК.

Человек в клетке

К счастью, имея слепок, получить ключ совсем не трудно, поскольку существует фермент ревертаза. С его помощью быстро и споро с мРНК снимается копия ДНК. И вот теперь в пробирке экспериментаторов оказывается, наконец, ДНК.

Однако процесс еще далек от своего завершения, поскольку ДНК, находящаяся в пробирке, состоит из одиночных цепей, в то время как в гене каждая ее цепь соединяется с соответствующей (комплементарной) цепью. Но синтез последней — специальность другого фермента. Так называемой ДНК-полимеразы. И когда наконец с его помощью синтез комплементарной цепи произойдет, в дело вступит еще один фермент, у которого своя обязанность — убрать ставшие ненужными одно-цепочные участки ДНК.

Вот теперь можно сказать, что таинство действительно свершилось, потому что в пробирке, наконец, искомое вещество — чистая двухцепочная ДНК. А иными словами — желанный ген соматотропина.

Однако его в пробирке чрезвычайно мало. И потому ни о каком практическом использовании этого вещества не может быть и речи. Его еще нужно наработать, произвести в гораздо больших объемах. Делают это так: с помощью целого ряда тончайших генетических манипуляций ген «встраивают» в плазмиду. Подробности проведения таких операций вам знакомы еще по первой части этой книги, Да и конечный результат эксперимента теперь вы уже тоже можете предвидеть: как только плазмида окажется «дома», то есть в цитоплазме родной клетки, ген человеческого ростового гормона начнет в ней активно размножаться.

Размножаться-то он, конечно, начнет, но и только. А нужно, чтобы он «приказал» клетке запустить механизм продуцирования соматотропина. А вот этого он как раз и не может сделать, ведь у него отсутствуют необходимые для этого сигнальные элементы.

Отсюда вывод — их нужно дать гену. Для чего прежде всего хорошо бы выяснить, почему в процессе вышеназванных манипуляций в пробирке оказался ген соматотропина, не совсем идентичный вырабатываемому организмом?

Дело в том, что, подобно некоторым другим гормонам, соматотропин продуцируется в человеческом организме в «облике» белка-предшественника, так называемого прегормона. И только расщепляясь в гипофизе, становится, наконец, активным соматотропином. Так что пока в заветной пробирке — всего лишь ген предшественника соматотропина — прегормона.

Вот почему даже в случае активации такого гена никакого соматотропина не получить, ведь клетки кишечной палочки, в которую теперь он по воле ученых вписан, не обладают в отличие от гипофиза даром расщепления прегормона. Все, на что способен находящийся в пробирке ген, это продуцирование белка.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Биология, биофизика, биохимия / Политика / Биология / Образование и наука / Культурология