Фактически Каллан и Малдасена смогли пойти немного дальше предыдущей работы и научились работать со слегка неэкстремальными чёрными дырами. Экстремальная чёрная дыра — довольно странное явление в физике. Это объект с энтропией, но без тепла и температуры. В большинстве квантово-механических систем при отводе всей энергии всё жёстко фиксируется на своих местах.
Например, если отвести всё тепло от кубика льда, то в результате получится идеальный кристалл абсолютно без дефектов. Любая перестановка молекул воды потребовала бы энергии, а значит, и немного тепла. У льда, от которого отведено всё тепло, не остаётся ни избыточной энергии, ни температуры, ни энтропии.
Но есть исключения. Некоторые особые системы имеют множество состояний, в которых достигается одинаковая минимальная энергия. Иными словами, даже после того, как вся энергия отведена, есть возможности такой реорганизации системы, чтобы скрывать в ней информацию, причём делать это без добавления энергии. Физики говорят, что у таких систем имеется
Давайте вернёмся к примеру Сена. В его варианте все извивы струны движутся в одном направлении и потому не могут сталкиваться друг с другом. Но добавим извивы, движущиеся в противоположном направлении. Как можно ожидать, сталкиваясь с первыми, они будут порождать некоторую путаницу. В действительности они разогреют струну и поднимут её температуру. В отличие от обычных чёрных дыр эти почти экстремальные чёрные дыры не испаряются полностью, они испускают избыточную энергию и возвращаются в экстремальное состояние.
Каллан и Малдасена смогли применить теорию струи для вычисления скорости, с которой испаряется почти экстремальная чёрная дыра. Способ, которым теория струн объясняет испарение, восхитителен. Когда два извива, движущихся в противоположных направлениях, сталкиваются, они образуют один извив большего размера, который выглядит примерно вот так.
Как только образуется этот извив, ничто не препятствует его отрыву по модели, которая не отличается от той, что мы обсуждали с Фейнманом в 1972 году.
Но Каллан и Малдасена сделали больше, чем говорили. Они выполнили очень детальные расчёты испарения. Замечательный факт состоит в том, что их результаты в точности совпадают с методом Хокинга, предложенным двадцатью годами раньше, за исключением одного важного отличия: Малдасена и Каллан использовали только общепринятые методы квантовой механики. Как мы уже обсуждали в предыдущей части, квантовая механика хотя и содержит статистический элемент, но не допускает потерь информации. Поэтому исключена возможность, чтобы информация пропадала в ходе процесса испарения.
И вновь, похожие идеи разрабатывались другими физиками. Совершенно независимо две пары индийских физиков Самит Дас и Самир Матур, а также Гаутам Мандал и Стента Вадиа из бомбейского Института Тата (откуда вышел и Ашок Сен), выполнив расчёты, пришли к подобным же результатам.
Собранные воедино, все эти работы стали громадным достижением, и все они заслуженно стали знаменитыми. Тот факт, что энтропия чёрных дыр может быть подсчитана как информация, хранящаяся в извивах струи, прямо противоречила взглядам многих релятивистов, включая Хокинга. Стивен видел в чёрных дырах
Драматичность этого момента не прошла незамеченной. Многие люди, включая моих друзей из Санта-Барбары, неожиданно дезертировали со своего корабля и переметнулись на сторону противника. Если у меня и оставались какие-то сомнения в том, что Битва при чёрной дыре вскоре завершится, они рассеялись, когда Джо Полчински и Гэри Хоровиц — прежде державшие в битве нейтралитет — стали моими союзниками[146]
. В моём понимании это было переломное событие.Теория струн может быть, а может не быть правильной теорией физического мира, но она показала, что аргументы Стивена некорректны. Игра была окончена, но, удивительным образом, Стивен и многие другие релятивисты не хотели этого признавать. Они по-прежнему были ослеплены старыми хокинговскими аргументами.
22
Южная Америка выигрывает сражение