Нобелевский лауреат по физике Мюррей Гелл-Манн позаимствовал лозунг из книги «Король былого и грядущего» Т. Уайта[60]: «Всё, что не запрещено, — обязательно». В частности, в классической физике множество событий просто не могут случиться. В большинстве случаев, однако, эти события возможны в квантовой теории. Вместо того чтобы быть невозможными, эти события просто крайне маловероятны. Но, несмотря на их невероятность, если подождать достаточно долго, они в конце концов произойдут. Так что всё незапрещённое обязательно.
Хорошим примером этого служит явление, называемое
Пренебрежём всем, что не относится к делу, вроде трения или сопротивления воздуха. Предположим также, что водитель забыл поставить машину на ручной тормоз, так что она может свободно катиться. Ясно, что, если автомобиль стоит внизу впадины, он сам собой не начнёт двигаться. Смещение в любую сторону приведёт к подъёму по склону, и если автомобиль изначально покоился, у него не будет энергии, чтобы двигаться вверх. Если позднее мы обнаружим этот автомобиль скатывающимся с холма за возвышением, следует предположить, что либо кто-то вытолкнул его, либо он получил откуда-то энергию, чтобы тем или иным способом перевалить через бугор. Спонтанное перепрыгивание через возвышенность в классической механике невозможно.
Но помните: всё, что не запрещено, — обязательно. Если бы автомобиль был квантово-механическим (а таковы на самом деле все автомобили), ничто не мешало бы ему внезапно появиться с другой стороны бугра. Это может быть крайне маловероятно, — для большого тяжёлого объекта вроде автомобиля это очень,
Для столь массивного объекта, как автомобиль, вероятность туннелирования так мала, что потребуется невообразимое время (в среднем), чтобы он спонтанно оказался с другой стороны пригорка. Для записи числа, достаточно большого, чтобы выразить это время, потребуется так много цифр, что даже если каждая из них будет не больше протона, они, при плотной упаковке, с большим Избытком заполнят всю Вселенную. Однако тот же самый эффект Может позволить альфа-частице (два протона и два нейтрона) туннелировать из атомного ядра или электрону туннелировать через разрыв в электрической цепи.
В 1972 году я воображал, что, хотя классическая чёрная дыра имеет строго определённую форму, квантовые флуктуации могут заставить её горизонт подрагивать. По идее, форма невращающейся чёрной дыры — это идеальная сфера, но квантовые флуктуации должны быть способны на короткое время деформировать её, придавая сплюснутый или вытянутый вид. Более того, иногда флуктуации могут быть столь велики, что чёрная дыра почти превращается в пару сфер меньшего размера, соединённых тонкой перемычкой. Из этого состояния ей легко разделиться. Тяжёлые атомные ядра спонтанно распадаются подобным образом, почему бы такому не случиться с чёрной дырой? В классике этого не может случиться, так же как автомобиль не может спонтанно перепрыгнуть через барьер. Но запрещено ли это абсолютно?
Теперь вернёмся в кафе «Уэст Энд». Заказав пиво, я ждал Фейнмана около получаса. Чем больше я думал, тем осмысленнее всё это мне казалось. Чёрная дыра может распасться путём квантового туннелирования сначала на две части, затем на четыре, восемь и, в конце концов, на огромное число микроскопических частей. В свете квантовой механики было бессмысленно верить в вечность чёрных дыр.
Фейнман вошёл в кафе за одну-две минуты до срока и подошёл к моему столику.
Прежде чем я успел заплатить, он достал бумажник и положил нужную сумму. Не знаю, оставил ли он чаевые. Потягивая пиво, я заметил, что стакан Фейнмана не касается стола. Начав с изложения своих аргументов, я закончил, сказав, что чёрные дыры должны в конце концов распадаться на крошечные куски. Чем бы они могли быть? Хотя это осталось непроизнесенным, единственным разумным ответом были элементарные частицы, такие как фотоны, электроны и позитроны.
Фейнман согласился, что нет никаких препятствий к тому, чтобы такое происходило, но он считает, что я нарисовал ошибочную картину. Первое деление чёрной дыры я представил как распад на два более или менее равных фрагмента. Каждый из них снова делился пополам, пока фрагменты не становились микроскопическими.