Читаем Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики полностью

1. Первым делом надо узнать, насколько увеличится энергия чёрной дыры при добавлении одного бита информации.

2. Далее нужно определить, насколько изменится масса чёрной дыры с добавлением лишнего бита. Для этого вспомним знаменитую формулу Эйнштейна:

E=m•c2

Однако нам понадобится обратить её, что позволит узнать изменение массы по величине добавленной энергии.

3. Когда масса определена, можно вычислить изменение шварцшильдовского радиуса, используя ту же формулу, которую вывели Митчел, Лаплас и Шварцшильд (см. главу 2):

Rs=2•M•G/c2

4. Наконец, надо определить прирост площади горизонта. Для этого нужна формула площади сферы:

Площадь горизонта = 4•Rs2

Начнём с энергии однобитного фотона. Как я уже объяснял, фотон должен иметь достаточно большую длину волны, чтобы его положение внутри чёрной дыры было неопределённым. Это значит, что длина волны должна быть Rs. Согласно Эйнштейну, фотон с длиной волны Rs имеет энергию E, определяемую следующей формулой:[72]

E=h•c/Rs

В этой формуле h — постоянная Планка, а c — скорость света. Из неё следует, что сбрасывание в чёрную дыру одного бита информации добавляет ей энергию величиной h•c/Rs.

Следующий шаг — это расчёт изменения массы чёрной дыры. Для пересчёта энергии в массу её надо разделить на c2, а значит, масса чёрной дыры возрастёт на величину h/Rs•c:

Изменение массы = h/Rs•c

Подставим в эту формулу числа, чтобы увидеть, сколько же добавит один бит к массе чёрной дыры, имеющей массу Солнца.

Постоянная Планка, h=6,6•10-34

Шварцшильдовский радиус чёрной дыры, Rs = 3000 м

Скорость света, c=3•108

Гравитационная постоянная, G=6,7•10-11

Таким образом, один бит информации добавляет к чёрной дыре солнечной массы поразительно малую величину:

Прирост массы = 10-45 килограмма.

И всё же, как говорится, «это больше, чем ничто»[73].

Перейдём к третьему шагу: используем связь между массой и радиусом для вычисления изменения Rs. В алгебраической форме ответ будет таким:

Прирост Rs=2•h•G/(Rs•c3)

У чёрной дыры солнечной массы Rs составляет около 3000 м. Если подставить все числа, то окажется, что радиус увеличится на 10-72 м. Это не только безмерно меньше протона, но также безмерно меньше планковской длины (10-35 м). При таком малом изменении непонятно, зачем мы вообще это вычисляем, но было бы ошибкой пренебречь этой малостью.

Последний шаг состоит в определении того, насколько изменится площадь горизонта. Для чёрной дыры солнечной массы прирост площади горизонта составляет около 10-70 квадратного метра. Это очень малая величина, но опять, «это больше, чем ничто». И не просто больше, чем ничто, а нечто совершенно особое: 10-70 м2, оказывается, как раз равняется одной квадратной планковской единице.

Это случайное совпадение? Что получится, если взять чёрную дыру земной массы (размером с клюквину) или чёрную дыру в миллиард раз массивнее Солнца? Попробуйте — с числами или с формулами. Каков бы ни был исходный размер чёрной дыры, всегда выполняется правило:

Добавление одного бита информации увеличивает площадь горизонта любой чёрной дыры на одну планковскую единицу площади, или на одну квадратную планковскую единицу.

Каким-то образом в принципах квантовой механики и общей теории относительности скрыта загадочная связь между невидимыми битами информации и кусочками площади планковского размера.

Когда я объяснил всё это на своём подготовительном курсе по физике в Стэнфорде, кто-то на заднем ряду протяжно присвистнул и произнёс: «Кру-у-уто». Это действительно круто, а ещё глубоко и, вероятно, содержит ключ к загадке квантовой гравитации.

Теперь представьте формирование чёрной дыры бит за битом, так же как можно наполнять ванну атом за атомом. Каждый раз при добавлении бита информации площадь горизонта прирастает на одну планковскую единицу. К тому времени, когда чёрная дыра будет готова, площадь её горизонта окажется равной общему числу битов скрытой в ней информации. Так что главное достижение Бекенштейна можно суммировать тезисом:

Энтропия чёрной дыры, измеренная в битах, пропорциональна площади её горизонта, измеренной в планковских единицах.

Или, ещё более кратко:

Информация равна площади.

Это выглядит почти так, как если бы горизонт был плотно покрыт несжимаемыми битами информации; сходным образом можно плотно покрывать столешницу монетами.

При добавлении новых монет площадь, занятая всеми монетами вместе, будет расти. Биты, монеты — принцип один и тот же.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука