Читаем Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики полностью

Второй момент — менее знакомый. Как я уже объяснял, хокинговская температура чёрной дыры чрезвычайно мала. Тогда почему же граф с императором регистрировали такую высокую температуру вблизи горизонта, когда опускали туда свой термометр? Чтобы это понять, нам надо знать, что происходит с фотоном, когда он вырывается из мощного гравитационного поля. Но давайте начнём с чего-то более знакомого — камня, брошенного вертикально вверх с поверхности Земли. Если его начальная скорость невелика, он упадёт обратно на поверхность. Но если придать ему достаточную кинетическую энергию, камень вырвется из земного тяготения.

Однако даже если камню это удастся, у него останется гораздо меньше кинетической энергии, чем было на старте. Иными словами, начиная движение, камень обладает гораздо большей кинетической энергией, чем к тому моменту, когда он наконец покинет Землю.

Все фотоны движутся со скоростью света, но это не значит, что все они имеют одинаковую кинетическую энергию. На самом деле они во многом похожи на камень. Поднимаясь в гравитационном поле, они теряют энергию; чем сильнее гравитация, которую они преодолевают, тем больше энергии теряется. По мере удаления от горизонта запасы энергии гамма-излучения настолько истощаются, что оно превращается в очень малоэнергичную радиоволну. И наоборот, радиоволна, наблюдаемая вдали от чёрной дыры, должна была быть высокоэнергичным гамма-излучением, когда покидала горизонт.

Теперь рассмотрим графа и императора, находящихся высоко над чёрной дырой. Хокинговская температура столь мала, что радиочастотные фотоны имеют очень низкую энергию. Но, немного подумав, граф и император могут понять, что те же фотоны были сверхвысокоэнергичными гамма-квантами, когда они испускались вблизи горизонта. Но это то же самое, что сказать: там внизу намного горячее. Гравитация у горизонта чёрной дыры столь сильна, что фотонам требуется колоссальная энергия для ухода из этой области. При наблюдении издали чёрная дыра может быть очень холодной, но близко поднесённый термометр подвергается жестокой бомбардировке энергичными фотонами. Вот почему палачи были уверены, что их жертвы испарятся на горизонте.

Лекция продолжается

Похоже на то, что мы пришли к противоречию. Один набор принципов — общая теория относительности и принцип эквивалентности — говорят, что информация в ненарушенном виде Попадает внутрь горизонта. Другой — квантовая механика — приводит нас к противоположному заключению: падающие биты, хотя и в страшно перепутанном виде, в конце концов возвращаются в форме фотонов и других частиц.

Тут вы может спросить: откуда мы знаем, что биты после падения сквозь горизонт, но до попадания в сингулярность не могут выйти обратно в виде хокинговского излучения? Ответ очевиден: чтобы сделать это, им потребовалось бы превысить скорость света.

Я продемонстрировал вам серьёзный парадокс — и утверждаю, что он может иметь огромное значение для будущего физики. Но я не дал вам никакого намёка на возможные пути решения этой дилеммы. Это потому, что я сам не знаю её решения. Но у меня есть по этому вопросу предубеждение, и позвольте я расскажу, в чём оно заключается.

Я не верю, что мы откажемся от принципов квантовой механики или от тех, на которых строится общая теория относительности. В частности, я, как и Герард 'т Хоофт, верю в то, что при испарении чёрных дыр не происходит потери информации. Каким-то образом мы упускаем нечто очень важное относительно информации и того, как она локализуется в пространстве.

Эта лекция в Сан-Франциско была первой в большом ряду подобных лекций, которые я читал на физических факультетах и конференциях по меньшей мере на пяти континентах. Я решил, что, даже если я не могу разрешить эту загадку, я должен проповедовать её важность.

Одну из таких лекций я помню особенно хорошо. Она состоялась в Техасском университете на одном из лучших физических факультетов в Соединённых Штатах. В аудитории было множество выдающихся физиков, таких как Стивен Вайнберг, Уилли Фишлер, Джо Полчински, Брайс Девитт и Клаудио Тейтельбойм, — все они внесли большой вклад в теорию гравитации. Меня очень интересовали их взгляды, так что в конце лекции я провёл опрос аудитории. Если мне не изменяет память, Фишлер, Девитт и Тейтельбойм остались в меньшинстве, считая, что информация не теряется. Полчински был убеждён аргументами Хокинга и проголосовал вместе с большинством. Вайнберг воздержался. В целом итог голосования был примерно три к одному в пользу Хокинга, однако значительная часть аудитории не захотела связывать себя с определённой позицией.

В период этой патовой ситуации наши со Стивеном пути несколько раз пересекались. Самая важная изо всех этих встреч состоялась в городе Аспене.

14

Схватка в Аспене

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука