Лаплас считал, что он может предсказать будущее, если только достаточно знает о настоящем. К несчастью для всех будущих предсказателей мира, узнать одновременно положение и скорость объекта невозможно. Я не о том, что это чрезвычайно трудно или что неосуществимо при современном уровне развития технологии. Никакая технология, подчиняющаяся законам физики,
Принцип неопределенности стал тем перевалом, который поделил физику на доквантовую
Принцип неопределенности — это странное и дерзкое утверждение, сделанное в 1927 году 26-летним Вернером Гейзенбергом, после того как он и Эрвин Шрёдингер открыли математику квантовой механики. Даже в эпоху множества необычных идей этот принцип выглядит крайне странным. Гейзенберг не утверждал, что есть какие-либо ограничения на точность, с которой можно измерить положение объекта. Координаты, задающие положение частицы в пространстве, можно определить с любой желаемой степенью точности. Он также не ставил пределов точности, с которой может быть измерена скорость объекта. Но он утверждал, что никакой эксперимент, как бы сложно и изобретательно он ни был поставлен, не может измерить положение и скорость одновременно. Это как если бы эйнштейновский Бог устроил бы все так, чтобы никто и никогда не мог предсказывать будущее.
Хотя принцип неопределенности посвящен расплывчатости, но в нем самом, парадоксальным образом, нет ничего расплывчатого. Неопределенность — это строгая концепция, включающая измерения вероятностей, интегральное исчисление и прочие математические изыски. Впрочем, перефразируя широко известное выражение, одна картинка стоит тысячи уравнений. Начнем с представления о распределении вероятностей. Пусть для очень большого числа частиц, скажем для триллиона, изучается их расположение вдоль горизонтальной оси, также называемой осью X. Первая частица оказалась в точке
Один взгляд на этот график говорит нам, что большинство частиц находится вблизи точки
Проделаем еще один мысленный эксперимент. Вместо измерения положений частиц будем измерять их скорости, считая их положительными для частиц, движущихся вправо, и отрицательными для тех, что движутся влево. На этот раз горизонтальная ось представляет скорость
Из графика видно, что большинство частиц движется влево, и можно также составить представление о разбросе скоростей Δν.
Принцип неопределенности говорит примерно следующее: любая попытка уменьшить неопределенность положения неизбежно будет приводить к увеличению неопределенности скорости. Например, можно целенаправленно выбрать только частицы в узком диапазоне значений
Оказывается, если взять то же подмножество частиц и измерить их скорости, разброс их значений окажется значительно больше, чем в исходной выборке. Вы можете удивиться, почему так происходит, но, боюсь, это просто один из непостижимых квантовых фактов, которым нельзя дать классического объяснения. Это одна из тех вещей, о которых Фейнман говорил: «Теоретическая физика отказалась от этого».