Стивен, по его собственным словам, сначала не поверил странному выводу, сделанному Якобом Бекенштейном, в то время никому не известным принстонским студентом. Каким образом черные дыры могут обладать энтропией? Энтропия связана с незнанием — незнанием скрытой микроскопической струкутуры, подобно нашему незнанию точного положения молекул в ванне с теплой водой. Эйнштейновская теория гравитации и решение Шварцшильда для черной дыры ничего не говорят о микроскопических сущностях. Более того, похоже, что в черной дыре просто нет ничего, что можно было бы не знать. Шварцшильдовское решение уравнений Эйнштейна было единственным и точным. Для каждого значения массы и углового момента было одно, и только одно решение, описывающее черную дыру. Именно это имел в виду Джон Уилер, говоря, что «черные дыры не имеют волос». Согласно обычной логике, уникальная конфигурация (вспомните идеальный BMW из главы 7) не должна обладать энтропией. Бекенштейновская энтропия не имела смысла для Хокинга, пока он не изобрел свой собственный способ думать о ней.
Ключом для Хокинга стала температура, а не энтропия. Само по себе существование энтропии не подразумевает, что у системы есть температура[78]. Третья величина, энергия, также входила в уравнения. Связь между энергией, энтропией и температурой отсылает нас кзарождению термодинамики[79] в начале девятнадцатого века. В моде тогда были паровые двигатели, а француза Николя Леонара Сади Карно можно было назвать паровым инженером. Он интересовался очень практичным вопросом: как самым эффективным способом использовать тепло, содержащееся в данном количестве пара, для выполнения полезной работы — как получить максимальный навар с бакса. В данном случае под полезной работой подразумевалось ускорение локомотива, для чего требовалось преобразовывать тепловую энергию в кинетическую энергию большой массы железа.
Тепло — это неорганизованная хаотическая энергия случайного движения молекул. Напротив, кинетическая энергия локомотива организована в форме одновременного синхронизированного движения огромного числа совместно движущихся молекул. Так что задача состояла в том, чтобы превратить определенное количество неорганизованной энергии в организованную. Проблема состояла в том, что никто на самом деле не понимал, что в точности означает «организованная» и «неорганизованная» энергия. Карно первым определил энтропию как меру неорганизованности.
Сам я впервые познакомился с понятием энтропии, будучи студентом-механиком. Ни я сам, ни мои сокурсники не знали ничего о молекулярной теории теплоты, и я готов поспорить, что наш профессор — тоже. Курс «Машиностроение 101: термодинамика для механиков» был настолько путаным, что я, будучи определенно лучшим студентом в группе, ничего не мог понять. Хуже всего дело было с концепцией энтропии. Нам говорилось, что если мы что-нибудь немного нагреем, то изменение тепловой энергии, деленное на температуру, даст измерение энтропии. Все это записали, но никто не понял смысла. Для меня это было совершенно невразумительно: «Изменение числа сосисок, деленное на коэффициент кислых щей, называется белорояльностью»[80].
Частью этой проблемы было мое полное непонимание температуры. Согласно моему профессору, температура — это то, что измеряется термометром. «Да, — мог бы спросить я, — но
Определять энтропию через температуру — это запрягать телегу впереди лошади. Хотя мы и правда обладаем врожденным чувством температуры, более абстрактные концепции энергии и энтропии гораздо фундаментальнее. Профессор должен был сначала объяснить, что энтропия — это мера скрытой информации и выражается в битах. А затем он мог переходить к утверждению (корректному):
Изменение энергии при добавлении одного бита? Это же в точности то, что вычислил для черной дыры Бекенштейн. Похоже, он, сам того не осознавая, подсчитал температуру черной дыры.
Хокинг немедленно заметил упущение Бекенштейна, но мысль о том, что черная дыра имеет температуру, показалась Стивену столь абсурдной, что его первой реакцией было отбросить как недоразумение энтропию вместе с температурой. Возможно, отчасти причиной этого отторжения было то, что смехотворной идеей казалось испарение черной дыры. Я точно не знаю, что заставило Стивена передумать, но он это сделал. Используя сложнейшую математику квантовой теории поля, он нашел собственный способ доказать, что черные дыры излучают энергию.