И с этими словами они счастливо пересекли горизонт, по крайней мере, если вы верите в принцип эквивалентности.
В этой истории много огрехов, помимо литературных. В частности, если черная дыра столь велика, что Стив и его последователи могут прожить годы, прежде чем достигнут сингулярности[93], то и графскому термометру понадобится не меньше лет, чтобы добраться до места измерения. Еще хуже то, что время, в течение которого черная дыра испускает биты информации, изначально принадлежавшие Стиву и его последователям, должно быть невероятно долгим, гораздо большим, чем время жизни Вселенной. Но если игнорировать такие количественные детали, основная логика этой истории вполне осмысленна.
Или нет?
Стал ли Стив жертвой горизонта? Граф и император подсчитали каждый бит, и все они были в продуктах испарения «в полном соответствии с предсказаниями квантовой механики». Так что Стив был уничтожен, когда приблизился к горизонту. Но история также говорит, что Стив благополучно пересек горизонт без ущерба для себя и своей семьи — в полном соответствии с принципом эквивалентности.
Очевидно, мы имеем дело со столкновением принципов. Из квантовой механики вытекает, что все объекты над самым горизонтом встречают сверхгорячую область, где экстремальная температура превращает всю материю в разрозненные фотоны, которые потом уходят от черной дыры, подобно тому как свет уходит от Солнца. В итоге каждый бит информации, уносимый падающей материей, должен найти отражение в этих фотонах.
Но, похоже, принцип эквивалентности дает нам другую, противоположную версию этой истории.
Позвольте мне прервать пересказ лекции 1988 года, чтобы прояснить детали, которые были известны многим любителям физики, присутствовавшим в аудитории, но, возможно, не известны вам. Прежде всего, почему принцип эквивалентности дает изгнанникам уверенность в безопасности горизонта? Тут помогает мысленный эксперимент, который я упоминал в главе 2. Представьте себе жизнь в лифте, но в мире, где гравитация гораздо сильнее, чем на поверхности Земли. Если лифт неподвижен, пассажиры ощущают всю силу тяготения ступнями своих ног и всеми частями своих сдавленных тел. Допустим, лифт начинает подниматься. Направленное вверх ускорение делает ситуацию еще хуже. Согласно принципу эквивалентности, ускорение дает дополнительный вклад в испытываемую пассажирами силу тяжести.
Но что, если трос оборвется и лифт начнет ускоряться вниз? Тогда он вместе с пассажирами окажется в состоянии свободного падения. Воздействие гравитации и направленное вниз ускорение в точности компенсируют друг друга, и пассажиры не смогут сказать, что они находятся в мощном гравитационном поле, по крайней мере пока они не ударятся о землю и не испытают разрушительного действия направленного вверх ускорения.
Точно так же изгнанники на своей свободно падающей планете не должны чувствовать никакого влияния гравитации черной дыры вблизи горизонта. Они подобны свободно дрейфующим головастикам из главы 2, которые, не замечая того, проплывают мимо точки невозврата.
Второй момент — менее знакомый. Как я уже объяснял, хокинговская температура черной дыры чрезвычайно мала. Тогда почему же граф с императором регистрировали такую высокую температуру вблизи горизонта, когда опускали туда свой термометр? Чтобы это понять, нам надо знать, что происходит с фотоном, когда он вырывается из мощного гравитационного поля. Но давайте начнем с чего-то более знакомого — камня, брошенного вертикально вверх с поверхности Земли. Если его начальная скорость невелика, он упадет обратно на поверхность. Но если придать ему достаточную кинетическую энергию, камень вырвется из земного тяготения.
Однако даже если камню это удастся, у него останется гораздо меньше кинетической энергии, чем было на старте. Иными словами, начиная движение, камень обладает гораздо большей кинетической энергией, чем к тому моменту, когда он наконец покинет Землю.
Все фотоны движутся со скоростью света, но это не значит, что все они имеют одинаковую кинетическую энергию. На самом деле они во многом похожи на камень. Поднимаясь в гравитационном поле, они теряют энергию; чем сильнее гравитация, которую они преодолевают, тем больше энергии теряется. По мере удаления от горизонта запасы энергии гамма-излучения настолько истощаются, что оно превращается в очень малоэнергичную радиоволну. И наоборот, радиоволна, наблюдаемая вдали от черной дыры, должна была быть высокоэнергичным гамма-излучением, когда покидала горизонт.