Читаем Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики полностью

Идея была в том, чтобы очень аккуратно коснуться электрона световым лучом, так аккуратно, чтобы толчок не изменил его скорость, а затем сфокусировать луч и построить изображение. Но Гейзенберг обнаружил, что попался в ловушку свойств света. Прежде всего, рассеяние света одним электроном — это задача для корпускулярной теории электромагнитного излучения. Даже при самом аккуратном обращении с электроном Гейзенберг не мог попасть в него менее чем одним фотоном. Этот фотон должен быть очень слабым, то есть иметь очень низкую энергию. Столкновение с энергичным фотоном вызвало бы нежелательный сильный толчок.

Все изображения, созданные волнами, по своей природе размыты, и чем больше длина волны, тем менее резкой становится картинка. Радиоволны имеют наибольшую длину волны — от 30 сантиметров и более. Они дают замечательные изображения астрономических объектов, но если попробовать снять портрет в радиоволнах, он выйдет совсем нечетким.

Микроволны — следующие в направлении более коротких волн. Портрет, построенный сфокусированными 10-сантиметровыми микроволнами, по-прежнему был бы слишком размыт, чтобы различить на нем черты лица. Но когда длина волны уменьшается до пары сантиметров, становятся различимы нос, глаза, рот.

Простое правило: нельзя добиться фокусировки лучше, чем длина волны излучения, которое строит изображение. Размеры деталей лица — несколько сантиметров, и они становятся различимы лишь в более коротких волнах. Когда длина волны уменьшается до десятых долей сантиметра, лицо становится совершенно четким, хотя, возможно, мелкие прыщики на нем и не будут видны.

Допустим, Гейзенберг хочет получить достаточно четкое изображение электрона, чтобы увидеть его положение с точностью до микрона[101]. Для этого ему придется использовать свет с длиной волны меньше микрона.

И вот тут ловушка захлопывается. Помните, в главе 4 говорилось, что чем короче длина волны фотона, тем выше его энергия? Например, энергия одного радиоволнового фотона столь мала, что он не окажет на атом почти никакого влияния. Напротив, энергии одномикронного фотона будет достаточно, чтобы возбудить атом, забросив электрон вверх по энергетической лестнице квантовых орбит. Ультрафиолетовый фотон с длиной волны в десять раз меньше будет достаточно энергичен, чтобы вовсе вышибить электрон из атома. Так что Гейзенберг оказался в ловушке. Если он хочет определить положение электрона с высокой точностью, за это надо заплатить цену. Ему придется использовать очень энергичный фотон, который «толкнет» электрон и непредсказуемым образом изменит его движение. Если же использовать слабый фотон с небольшой энергией, то лучшее, что можно получить, это очень туманное представление о местоположении электрона. Настоящая уловка-22[102].

Возможно, у вас возникнет вопрос: а можно ли вообще измерить скорость электрона? Ответ — можно. Для этого нужно измерить его положение дважды, но с очень низкой точностью. Например, можно использовать длинноволновый фотон, чтобы получить очень размытый образ, а затем повторить эту операцию спустя очень длительное время. Измеряя два размытых образа, можно точно определить скорость, но ценой потери точности определения положения.

Что бы ни придумывал Гейзенберг, ему никак не удавалось одновременно определить положение и скорость электрона. Я представляю себе, как он и, конечно, его наставник Бор стали задумываться, есть ли вообще какой-то смысл считать, что электрон обладает одновременно положением и скоростью. Согласно философии Бора, электрон можно описать как имеющий положение, которое можно точно измерить, используя очень коротковолновый фотон, или можно описать его как имеющий скорость, измеримую с помощью длинноволновых фотонов, но не как то и другое сразу. Измерение одной характеристики препятствует измерению другой. Бор выразил это, сказав, что два типа знания — положение и скорость — это взаимно дополнительные аспекты электрона. И конечно, в рассуждениях Гейзенберга нет ничего специфичного именно для электрона; они в той же мере приложимы к протону, атому или шару для боулинга.

История про графа, императора и Стива кажется внутренне противоречивой. Но наблюдение битов информации внутри черной дыры и наблюдение их вовне горизонта несовместимы точно так же, как несовместимы друг с другом измерения положения и скорости. Никто не может быть одновременно и вне, и внутри горизонта. По крайней мере, это было утверждение, которое я собирался сделать в Санта-Барбаре.

Санта-Барбара

Черные дыры реальны. Вселенная полна ими, и они относятся к числу самых впечатляющих и неистовых космических объектов. Но в 1993 году на конференции в Санта-Барбаре большинство физиков не слишком интересовались астрономическими черными дырами. Их больше заботили не телескопические наблюдения, а мысленные эксперименты. И информационный парадокс наконец привлек к себе самое серьезное внимание.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Управление персоналом
Управление персоналом

В учебнике рассмотрены эволюция, теория, методология науки управления персоналом; стратегия и политика работы с людьми в организации; современные технологии их реализации; управление поведением работника; психофизиологические аспекты трудовой деятельности; работа с персоналом в условиях интернационализации бизнеса; формирование современных моделей службы персонала.Специфика учебника – знакомство читателя с дискуссионными проблемами кадрового менеджмента, перспективами его развития, прикладными методиками, успешно реализуемыми на предприятиях Германии, Австрии, Голландии, Ирландии, Греции, – стран, в которых авторы учебника неоднократно проходили длительные научные и практические стажировки.Для студентов, магистрантов, специализирующихся на изучении вопросов управления персоналом, профильных специалистов служб персонала, руководителей предприятий и организаций.Рекомендовано УМО вузов России по образованию в области менеджмента в качестве учебника для студентов высших учебных заведений, обучающихся по специальностям «Менеджмент организации» и «Управление персоналом».

Коллектив авторов

Научная литература / Прочая научная литература / Образование и наука
Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука
История Византийских императоров. От Константина Великого до Анастасия I
История Византийских императоров. От Константина Великого до Анастасия I

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Пятитомное сочинение А.М. Величко «История Византийских императоров» раскрывает события царствования всех монархических династий Священной Римской (Византийской) империи — от св. Константина Великого до падения Константинополя в 1453 г. Это первое комплексное исследование, в котором исторические события из политической жизни Византийского государства изображаются в их органической взаимосвязи с жизнью древней Церкви и личностью конкретных царей. В работе детально и обстоятельно изображены интереснейшие перипетии истории Византийской державы, в том числе в части межцерковных отношений Рима и Константинополя. Приводятся многочисленные события времён Вселенских Соборов, раскрываются роль и формы участия императоров в деятельности Кафолической Церкви. Сочинение снабжено портретами всех императоров Византийской империи, картами и широким справочным материалом.Для всех интересующихся историей Византии, Церкви, права и политики, а также студентов юридических и исторических факультетов.Настоящий том охватывает эпоху от Константина Великого до Анастасия I.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Алексей Михайлович Величко

Научная литература