Тогда же в 1962 г., когда была разработана первая мини-ЭВМ, это бюро посетили Н. С. Хрущев, в числе прочих были главком ВМФ Горшков и министр Шокин. Разработки этого коллектива произвели сильное впечатление на Хрущева. К этому времени Старое и его группа из пяти человек разработали проект Центра микроэлектроники (по типу американской компании Ай-Би-Эм — IBM), который был активно поддержан Хрущевым. В результате был создан центр-наукоград в Зеленограде под Москвой, а также конструкторские бюро в Риге, Минске, Ереване и Тбилиси. Старое был назначен заместителем генерального директора Зеленограда по науке, оставаясь одновременно начальником конструкторского бюро в Ленинграде. К 1964 г. в КБ-2 была разработана микро-ЭВМ УМ-2 для аэрокосмических систем, в первую очередь разработок Королева и Туполева. На базе УМ-2 была создана многоцелевая управляющая система «Узел» для малых подводных лодок. Затем в начале 1970-х гг. в КБ-2 были получены монолитные БИС (большие интегральные схемы), а далее и семейство однокристальных мини-ЭВМ.
Но в 1964 г. начались интриги — министр электронной промышленности А. Шокин и Ф. Старое вошли в конфликт по вопросам дальнейшего развития отрасли, а главный покровитель Староса Хрущев был снят с поста первого секретаря КПСС в октябре того же года. В1974 г. КБ-2 было включено в состав производственного объединения «Светлана» (сейчас АО «Светлана» — «Микроэлектроника» — так называется бывшее КБ-2 Староса). Ф. Г. Старое уехал на Дальний Восток президентом Дальневосточного отделения РАН, где создал институт искусственного интеллекта, а в 1979 г. безвременно ушел из жизни в возрасте 60 лет. Яркая и продуктивная жизнь талантливого инженера, основателя советской и российской школы микроэлектроники.
Но вернемся к авиамоторам. Нельзя сказать, что на двигателях того времени совсем уж не использовалось электричество: искровые системы зажигания, контроль температуры газа за турбиной с помощью термопар, система электромеханических реле — программатор, отрабатывающий циклограмму запуска — все это отдельные электрические и электронные системы. Но в широком смысле для реализации «умного» управления двигателем, включая и мониторинг его состояния по множеству параметров, требовалась принципиально иная система. Система, получившая позднее с легкой руки американцев название FADEC (в просторечии «Фа-дек»), где ключевыми словами являются «Full Authority», т. е. с «полной ответственностью», без какого-либо гидромеханического резерва. Ну а следующие буквы «D», «Е», «С» имеют очевидную расшифровку «Digital» («цифровая»), «Electronic» («электронная»), «Control» (система «управления»). Современная электронно-цифровая управляющая машина авиационным двигателем оперирует 40–50 входными сигналами (дискретными и непрерывными) и порядка 30-ю выходными управляющими сигналами. Частота выдачи решений составляет 50—100 герц, что соответствует частоте среза (пропускаемой частоте) объекта, т. е. двигателя. Но для создания такой машины нужно было разработать не только новые алгоритмы управления и мониторинга, но и встроенные подсистемы самоконтроля, их непротиворечивого взаимодействия, распознавания нормальных и аварийных ситуаций, реконфигурации программ управления в зависимости от состояния двигателя или самолета, резервирования каналов управления и т. д., и т. п.
Наконец, нужно было разработать технологию отладки оказавшегося чрезвычайно разветвленным программного обеспечения системы управления и мониторинга двигателя как на безмоторном стенде, где двигатель заменен математической моделью, так и во время испытаний его на стенде и в полете. Позже оказалось, хотя это можно было предвидеть, что в слаботочных электросетях передачи информации наводятся сильные электромагнитные помехи, например от срабатывания электромагнитов или переменных контактов в штепсельных разъемах из-за вибраций. Пришлось скрупулезно заниматься помехами, особенностью которых была их кратковременность и случайность воздействия и соответственно трудность распознавания, достаточная тем не менее для сбоя программы. Вопросы молниезащиты, вибраций, повышенной температуры и т. д., и т. п. Вместо проблемы обеспечения качества (чистоты и температуры) топлива в гидромеханике на смену пришла, по сути, аналогичная проблема обеспечения качества электропитания.
Как известно, электронные информационные системы позволяют творить чудеса с обработкой большого количества информации, но их субстанция, элементная база, очень чувствительна к окружающей среде, очень «нежна». А двигатель как преобразователь энергии, естественно, «груб» в своих проявлениях, особенно в вибрациях и температуре. Сочетать эти два разнотипных объекта на одной платформе очень сложно.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное