Наиболее близким советским аналогом этого двигателя является Д-36 разработки Запорожского ОКБ. Этот трехвальный двигатель стоит на самолете Як-42, имеет тягу на земле 6500 кг и малый расход топлива благодаря степени двухконтурности 5,6. Правда, диаметр вентилятора у него, естественно, побольше (1373 мм).
Успех применения БПЛА «Глобал Хоук», как видно, определяется не столько инновационным двигателем, сколько уникальными характеристиками системы в целом. Этот самолет в подлинном смысле этого слова способен держаться в воздухе свыше 32 часов, летая на высоте выше 70 000 футов (21336 м). На основании успешного опыта применения «Глобал Хоук» ВМС США заказали 120 таких самолетов. Как можно видеть из таблицы требований, представленной выше, этот самолет, по сути, является универсальным БПЛА, выполняющим и разведывательные, и ударные функции. Но эта универсальность имеет и свои недостатки: недостаточно малую заметность, высокую стоимость, традиционное вооружение. Следующее поколение БПЛА, по-видимому, будет иметь более узкую специализацию. И вот для этого следующего поколения БПЛА следует ожидать инноваций как в разработках двигателей, так и в создании вооружения на новых физических принципах.
Начнем с легкого разведывательного (массой не более 3 тонн) самолета. Как мы видели из таблицы, главным критерием качества силовой установки такого БПЛА является ее минимальная стоимость. Обычные газотурбинные двигатели имеют ограничения по минимальному размеру, хотя и известен пример изготовления в лаборатории Массачусетского технологического института полноценного ГТД (с ротором и камерой сгорания по схеме Охайна) мощностью 50 ватт размером с монету с помощью технологии производства печатных плат (вытравливанием лопаток).
Итак, газотурбинный двигатель для данного типа самолета не является оптимальным хотя бы потому, что имеется другое решение. А именно, схема пульсирующе-детонирующего двигателя (ПДД или, в английской транскрипции, очевидно, PDE, где «Е» — «engine», т. е. двигатель). Если в поршневых двигателях от детонации топ-ливо-воздушной смеси пытались уйти всеми способами, замедляя процесс горения разного рода присадками к топливу, то в ПДД наоборот, именно детонация (быстрое сгорание и вызванная этим ударная волна) позволяет реализовать эффективное преобразование химической энергии топлива в тепло, а затем и в работу расширения без применения клапанов. Но для этого нужна труба, открытая с одного конца, чтобы было, куда расширяться. Закрытый же (передний) конец трубы воспринимает повышенное в результате детонационного горения давление и тем самым передает получающееся усилие (тягу) на самолет. Заметим, что в поршневом двигателе объем является замкнутым (с помощью клапанов), и поэтому детонационное горение приводит к недопустимым нагрузкам. Процесс в ПДД организован следующим образом: свежая топливо-воздушная смесь поступает в трубу и поджигается. Благодаря высокой скорости горения происходит локальное сильное повышение температуры и давления (как при взрыве) — формируется фронт ударной волны, которая со сверхзвуковой скоростью распространяется вдоль трубы в обе стороны: ко входу и к выходу. Этот фронт имеет за собой высокую температуру и, проходя вдоль трубы, поджигает смесь. Этот же фронт выполняет и функцию клапана, блокируя конвекцию смеси до окончания горения. Из-за большой скорости перемещения фронта ударной волны процесс горения происходит «мгновенно»; фактически реализуется горение при постоянном объеме подобно поршневому двигателю. Далее поступает новая порция смеси, и процесс повторяется.
Конечно, простота эта во многом кажущаяся: в реальности существуют проблемы реализации этого идеального цикла. Но эти проблемы решаемы, а выгода применения такого типа двигателя в сравнении с газотурбинным очевидна. Кроме простоты схемы и большего на 30 % кпд, ПДД обладает еще одним преимуществом: он может работать в большом диапазоне скоростей полета (от М=0 до гиперзвуковых скоростей М=4–5). Тактическое применение разведывательных БПЛА с двигателем такой схемы предполагает быстрый выход в район цели с гиперзвуковой скоростью с дальнейшим выключением двигателя и нахождением над целью (например, полем боя) в режиме планирования. Возвращение БПЛА происходит в обратном порядке.
Есть, однако, у ПДД и неприятные особенности его работы: сильные вибрации и шум, обусловленные пульсирующим режимом его работы (частота пульсаций — циклов прохождения ударной волны — составляет обычно 100–150 герц). Эти вибрации, в частности, оказывают неблагоприятное воздействие и на аппаратуру наблюдения, смонтированную на БПЛА. Для уменьшения этого неблагоприятного фактора предусматриваются постановка демпферов и применение многотрубной конструкции подобно многоцилиндровому мотору. В этом случае процесс в детонационных трубах организуется со сдвигом по фазе (времени).
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное