Читаем Блеск и нищета К.Э. Циолковского полностью

«Глава III содержит задачи о прямолинейном движении точки переменной массы и, прежде всего, те, к которым мы приходим, рассматривая вертикальное движение горящей ракеты и привязного аэростата … и далее решается задача о движении тяжелой точки массы m = m0 (1 + at)2 при сопротивлении среды, пропорциональном квадрату скорости» [36] [с. 43]. Решение этой задачи он свел к известному уравнению Риккати. В главе VI он рассматривал движение точки переменной массы в однородном поле тяготения, в том числе и когда масса точки изменяется по показательному закону [36] [с. 122]. Основное уравнение ракеты (формула К.Э. Циолковского) было представлено в виде [36] [с. 121]: X = а ln(f) + Х0 , где f – безразмерная масса, а = const.


Иногда можно слышать суждения и о том, что К.Э. Циолковскому хотя и не принадлежит приоритет в решении рассматриваемого уравнения, но он был первым, кто применил известную формулу к расчетам межпланетной ракеты (а не просто ракеты). Однако, если следовать этой логике, необходимо было бы законам, скажем, Ньютона или таблице умножения присваивать имена тех исследователей, которые впервые применяли их в новых областях науки и техники. Использование известной формулы в другой области познания не является предметом приоритета.


Не удалось К.Э. Циолковскому с помощью простых расчетов по этой формуле получить и какие-либо серьезные выводы. Наоборот, эти расчеты были способом ввести читателей в заблуждение относительно принципиальной осуществимости космической ракеты. С их помощью он, как уже отмечалось «прятал» проблемы, стоявшие на пути в космос.


К.Э. Циолковский в одной из своих работ писал:


«Я многое открыл, что было уже открыто ранее меня. Значение таких работ я признаю только для самого себя, так как они давали мне уверенность в моих силах. Также должны смотреть на свои открытия ученые, сделавшие их после меня. Обвинять в заимствованиях, конечно, без доказательств нельзя. Все же я думаю, что как мои запоздалые работы, так и других ученых отчасти навеяны отголосками ранее опубликованных трудов. Молва и печать их распространяют иногда и без указания источников. Печатная дата – вот, что решает спор о первенстве (приоритете) и значении ученого» [116] [л. 1].


Ну что ж, настало время вернуть свой долг И.В. Мещерскому или англичанам. Следует вспомнить еще одну горестную судьбу уравнения, впервые полученного и исследованного И.В. Мещерским в 1897 году. Оно являлось частным случаем уравнения (1) и, только спустя 31 год(!), итальянский математик Леви-Чивита еще раз его вывел и оно получило его имя: «уравнение Леви-Чивита» [36] [с. 16]. И здесь следовало бы восстановить историческую справедливость – для этого, в частности, и существуют историки науки и техники, – и вернуть И.В. Мещерскому его уравнение.


Итак, мы не нашли у К.Э. Циолковского ни одной задачи, типичной для ракетодинамики, специфику которой он не понимал и подменял в результате сущность ракетного движения представлениями о движении абстрактного тела.


Вот, например, как он решал вторую свою задачу, хотя непонятно кто и когда присвоил ей его имя. Формулируется она так: «Пусть ракета движется поступательно по вертикали вверх в однородном поле силы тяжести и начальная скорость центра масс ракеты равна Vo. Требуется определить закон изменения скорости и расстояния (высоты) ракеты в зависимости от времени при различных законах изменения массы и найти максимальную высоту подъема ракеты» [29] [с. 204].


Это цитата из работы А.А. Космодемьянского, в которой он привел современное решение и этой задачи, создавая у читателей иллюзию, что именно так ее и решил К.Э. Циолковский. Мы не будем здесь пересказывать решение ее А.А. Космодемьянским – желающие узнать о современных способах могут обратиться к первоисточнику [29], а мы отметим ход ее решения самим К.Э. Циолковским:



Дальше продолжать не будем, поскольку любой человек со средним образованием здесь все поймет без лишних слов. Отметим только, что ни о каком учете изменения массы ракеты К.Э. Циолковский речи, конечно же, не вел – необходимость этого он даже не понимал.


К.Э. Циолковскому не принадлежит приоритет в выводе ни одной формулы ракетодинамики – в своих рассуждениях он использовал малообоснованные формулы из школьного учебника физики. А ведь ракетодинамика – это еще и вариационные задачи.


Он не может считаться основоположником ракетодинамики.


В работе [85] утверждается, что получение формулы, носящей имя К.Э. Циолковского, «… было отнюдь не простым делом для того времени, как может показаться на первый взгляд.» Для доказательства отмечается, что американский исследователь Р.Х. Годдард, составив соответствующее дифференциальное уравнение, не сумел его решить, что уже «… само по себе доказывает на наличие своеобразных трудностей в этом вопросе» [85] [с. 27].


С нашей точки зрения этот вывод был весьма простым. В работе [38] приводится доказательство того, что это уравнение решали на экзаменах студенты Кембриджского университета еще в середине XIX в.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже