Первое доказательство того, что нервные импульсы в организме могут быть результатом химических реакций, представил в 1921 г. австрийский фармаколог и физиолог О. Леви (О. Loewi). В своем ставшем классическим эксперименте он установил, что при раздражении симпатического нерва изолированного сердца все той же многострадальной лягушки выделяется вещество, способное стимулировать сердечную деятельность другой лягушки. Ему понадобилось еще пять лет, чтобы показать, что химическая субстанция, расщепляющая это «вагус – вещество», идентична ацетилхолину. Данные факты послужили основой для создания теории химической передачи нервного возбуждения.
С того времени было открыто множество новых нейротрансмиттерных субстанций, но достичь аналогичных результатов в экспериментах с веществом головного или спинного мозга не удавалось. Это привело к тому, что представления о нейротрансмиттерах постоянно изменялись, в соответствии с новейшими открытиями в области нейробиологии и концепции рецепторов в фармакологии.
Согласно выводам Леви, нейротрансмиттеры являются продуктами обмена веществ, высвобождаемыми (образуемыми) в синапсе при стимуляции нейрона, и определенным образом воздействующими на клетки эффекторного органа, осуществляющего ответную реакцию организма на раздражитель. Несмотря на кажущуюся в теории простоту классификации таких химических субстанций мозга, как трансмиттеры, экспериментально определить их отличительные признаки чрезвычайно сложно. Эта проблематичность обусловлена анатомической комплексностью центральной нервной системы, ограничивающей целевое назначение электрической стимуляции определенных зон нейронов. К тому же, техника, имеющаяся на сегодняшний день в распоряжении специалистов, недостаточно чувствительна для качественной регистрации локального пресинаптического высвобождения потенциальных нейротрансмиттеров. Современные аналитические технологии, хотя и позволяют определить фемтомолярную концентрацию, но их чувствительности недостаточно, чтобы замерить содержимое высвобожденного пресинаптического трансмиттера. Один фемтомоль трансмиттера содержит около 600 миллионов молекул. Поступление раздражения лишь при разовом изменении пресинаптического потенциала вызывает на каждом нервном окончании реакцию выброса нескольких сотен синаптических везикул (внутриклеточных органоидов), каждая из которых содержит около 10 000 трансмиттерных молекул.
Наряду с аналитическими проблемами ситуацию усложняет и тот факт, что каждый нейрон образует около 1000 синаптических связей в различных участках клетки, которая, в свою очередь, является составной частью комплексной нейрональной сети. Все это делает практически невозможным избирательно замерить высвобождение определенного нейротрансмиттера.
Кроме всего прочего, нельзя исключать теоретическую возможность того, что стимуляция нейронной системы не будет сопровождаться высвобождением трансмиттеров, так как пресинаптическое торможение посредством пресинаптических рецепторов, действующих по принципу «отрицательной обратной связи», уменьшает или совсем прекращает высвобождение трансмиттера из пресинаптических нервных окончаний.
Вышеописанная проблематика делает весьма затруднительным само допущение факта трансмиттерной функции у субстанции, считающейся трансмиттером. Чтобы классифицировать продукт метаболизма клеток в качестве трансмиттера, он должен отвечать следующим четырем критериям:
1. Локализация.
Химическое вещество синтезируется в нейронах. Исследования постмортального материала демонстрируют характерное региональное распределение субстанций, причисленных к трансмиттерам.
2. Высвобождение.
Субстанция присутствует на окончаниях пресинаптических нейронов в высокой концентрации и высвобождается в больших количествах под воздействием ионов Са+2
, оказывая определенное воздействие на постсинаптическую клетку или эффекторный орган.3. Мимикрия.
Субстанция, введенная в организм эндогенным методом, в зависимости от ее объема в точности имитирует воздействие эндогенно высвобожденного нейротрансмиттера, т. е. активирует в постсинаптической клетке те же рецепторные ионные каналы или интрацеллюлярные (внутриклеточные) сигнальные трансдукционные каскады.
4. Инактивирование.
Наличие специфического механизма, способного удалить данную субстанцию из синаптической щели.