Результат суперпозиции последних приводит к тому, что если поперечные размеры падающего оптического пучка малы по сравнению с длиной поверхностной волны, то в отраженном сигнале будет доминировать дифракционный пучок нулевого порядка. В этом случае и окажется, что фаза световой волны будет промодулирована во времени с частотой звукового сигнала.
В-третьих, амплитудная модуляция, вызванная колебаниями подсвечивающего пучка относительно направления зеркального (максимального) отражения.
Эти колебания вызваны также пространственным перемещением оконного стекла под воздействием акустического сигнала.
На практике наиболее часто используют системы, работающие нa восприятии именно этого вида модуляции.
Для того чтобы работать с лазерными системами акустической разведки, требуется большой опыт. В частности, необходимо правильно выбрать точку съема, грамотно расположить аппаратуру на местности, провести тщательную юстировку. Для обработки перехваченных сообщений необходимо в большинстве случаев использование профессиональной аппаратуры обработки речевых сигналов на базе компьютера. Однако пока подобная техника не для любителей. В нашу страну несколько раз ввозились лазерные системы, но большинство из них так и не были проданы из-за высокой стоимости (от 10 до 130 тысяч $) и неподготовленности потенциальных пользователей, которые, кроме крика ворон, ничего не могли услышать.
Однако из печати известно, что лазерные микрофоны широко использовались против сотрудников советского (российского) посольства и консульств в США, подслушивались разговоры даже в семьях их сотрудников по месту жительства. Поэтому можно полагать, что так как опытные специалисты в состоянии скрытно применять подобные устройства, то весьма вероятно привлечение лазерных систем для решения задач конкурентной борьбы уже в ближайшем будущем.
На сегодняшний день создано целое семейство лазерных средств акустической разведки. Достижения в развитии лазерной техники позволили значительно улучшить технические характеристики и надежность работы данных систем разведки. Достаточно сказать, что появилась возможность дистанционной регистрации колебаний стекла с амплитудой вплоть до 10-14
—10-16 м, имеются сообщения о потенциальной возможности работы по объектам на расстояниях до 10 км, а наработка на отказ серийного гелий-неонового лазера составляет не менее 10 000 часов.Примером современных ЛСАР могут служить устройства НР0150 фирмы «Хьюлет Паккард» и SIPE LASER 3-DA SUPER.
НР0150
— лазерная система, обеспечивающая эффективное обнаружение, подслушивание и регистрацию разговоров, ведущихся в помещениях. Дальность его действия 1000 м. Устройство использует излучение гелий-неонового или полупроводникового лазера с длиной волны 0,63 мкм (что, кстати, является большим недостатком, так как пятно видно глазом, более современные системы работают в ближнем ИК-диапазоне). Прослушивание и перехват разговоров ведутся благодаря приему переотраженного сигнала от обычного оконного стекла, представляющего собой своеобразную мембрану, колеблющуюся со звуковой частотой и создающую фонограмму происходящего разговора. Приемник и передатчик выполнены раздельно. Кассетное устройство магнитной записи и специальный блок компенсации помех, а также треноги поставляются в комплекте устройства. Вся аппаратура размещена в небольшом чемодане. Электропитание — от батареи.SIPE LASER 3-DA SUPER
— данная модель состоит из источника излучения (гелий-неонового лазера), приемника этого излучения с блоком фильтрации шумов, двух пар головных телефонов, аккумулятора питания и штатива. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. Используется оптическая насадка, позволяющая изменять угол расходимости выходящего пучка, и система автоматического регулирования, задающая высокую стабильность параметров. Система обеспечивает съем речевой информации с хорошим качеством с оконных рам с двойными стеклами на расстоянии до 250 м.Технические характеристики некоторых видов ЛСАР приведены в табл. 1.3.12, а внешний вид — на рис. 1.3.44.
На качество работы лазерных микрофонов существенно влияет большое количество различных факторов: погодные условия, уровни фоновых шумов, толщина и марка стекла, жесткость крепления стекла в раме, способ крепления рамы к стене, длина волны передатчика, точность юстировки аппаратуры, обработки сигнала, длина волны, уровень речи в помещении и т. д. В связи с этим сложно говорить о дальности перехвата информации вообще, можно рассчитать дальность съема информации из данного помещения данной аппаратурой в данных условиях. Кстати, немецкие специалисты даже в рекламных проспектах отмечают, что дальность действия лазерной аппаратуры от единиц до сотен метров.