В случае, когда температура терморезистора устанавливается при помощи нагрева постоянным по величине током и обстоятельствами охлаждения, температура находится по условиям теплоотдачи поверхности прибора, т. е. скорости течения окружающей среды относительно терморезистора, рассматриваются плотность, вязкость, температура среды. Терморезистор выступает в качестве датчика скорости потока и теплопроводности окружающей среды, плотности газов и пр.
Термометрические датчики создают двухступенчатое преобразование. Первое преобразование состоит в переводе исследуемой величины в изменение температуры терморезистора, второе преобразование – изменение температуры терморезистора переводится в изменение сопротивления.
Терморезисторы производятся из чистых металлов и полупроводников. Главным критерием создания служит высокий температурный коэффициент сопротивления. Желательно наличие линейной зависимости сопротивления от температуры, воспроизводимости свойств, инертности влияния окружающей среды. Поэтому в основном предпочтение отдается платине, в меньшей степени – меди и никелю. К недостаткам медных терморезисторов относятся их малое удельное сопротивление, легкая окисляемость при высоких температурах, поэтому медные применяются до температуры до 180 °C.
Никель употребляется для недорогих датчиков, которые рассчитаны для измерений в комнатных температурах. Чувствительные элементы терморезисторов могут производиться разнообразной формы, чаще они изготавливаются небольшой цилиндрической формы, в виде стержня, шайбы, бусинки. Также элемент покрывается эмалью для предохранения от механических повреждений и вредного влияния температурноизменчивой окружающей среды. К тому же элемент помещается в защитную оболочку. Для измерения и сигнализации температуры необходимо индивидуально для каждого терморезистора произвести градуировку. Наибольшей чувствительностью среди металлических терморезисторов отличаются полупроводниковые терморезисторы, называемые термисторами.
Платиновые терморезисторы используются для измерения температур в диапазоне от -60 до +1100 °C. В производстве распространение получили наиболее дешевые медные терморезисторы, которые обладают линейной зависимостью сопротивления от температуры.
Термоэлектрический прибор измерительный
Представляет собой прибор, характеризуемый свойством термопреобразования, направленным на измерение в цепях переменного тока с низкими и высокими частотами.
Прибор включает в себя термоэлектрический преобразователь магнитоэлектрического миллиамперметра или микроамперметра. Преобразователь является сочетанием нагревателя, пропускающего через себя исследуемый ток, и термопары, находящейся в зависимости от нагревателя. В месте соединения термопары и нагревателя определяется одна температура, а на свободных концах термопары температура соответствует температуре окружающей среды, при этом разность температур образует термоэлектродвижущую силу. В результате тепловой инерции состояние устанавливается, и температура нагревателя в месте соединения считается постоянной и характеризуется рассеиваемой на нем мощностью. Нагреватель подсоединяется последовательно в разрыв исследуемой цепи. Для измерения термоэлектродвижущей силы используется микроамперметр, соответствующий работе милливольтметра.
Нагреватель является тонкой проволочкой, произведенной из манганина или нихрома. Термопара изготавливается из материалов и сплавов, которые должны быть устойчивыми при высоких температурах. Сечение нагревателя обусловливает наибольшее значение исследуемого тока, диапазон значений находится от единиц миллиампер и доходит до десятков ампер. Для нахождения больших показателей тока употребляются трансформаторы тока. Сечение и длина нагревателя обусловливают наибольшую частоту, при этом наименьший порог частоты определяется сотнями МГц.
Термоэлектрические преобразователи подразделяют на вакуумные и контактные. Контактные преобразователи характеризуются наличием гальванической связи для термопары и нагревателя, что равносильно гальванической связи между входной цепью и выходной цепью. Бесконтактный преобразователь создан таким образом, что нагреватель разделяется относительно термопары при помощи керамической или стеклянной бусинки, создавая между нагревателем и термопарой небольшую емкостную связь, при этом чувствительность бесконтактного преобразователя считается меньше чувствительности контактного преобразователя.
Для вакуумного преобразователя характерно установление нагревателя и термопары в стеклянный баллончик. Чувствительность вакуумного термопреобразователя меньше чувствительности контактного преобразователя.
Термоэлектрические приборы создают значения, которые не зависят от формы кривой исследуемого тока. К сожалению, они обладают небольшой чувствительностью, неравномерностью шкалы, невозможностью создания перегрузки.