В результате смешения колебаний получается постоянная промежуточная частота. Гетеродин обязательно должен иметь стабильную частоту и незначительные гармонические колебания.
В супергетеродинных радиоприемниках с однократным преобразованием частоты, после того как был принят сигнал с определенной частотой, он проходит через водную цепь и усилитель частоты. После этого сигнал проходит на смеситель преобразования частоты, где смешивается и преобразуется с колебаниями гетеродина. В супергетеродинных радиоприемниках с многократным преобразованием частоты механизм работы схож с приемником с однократным преобразованием.
Супергетеродинный радиоприемник с однократным преобразованием состоит из усилителя радиочастоты, входной цепи, гетеродина, усилителя промежуточной частоты, смесителя, усилителя низкой звуковой частоты, детектора, антенны. Кроме этого, в состав радиоприемника может входить оконечное устройство, такое как громкоговоритель и т. д.
Для настройки супергетеродинного радиоприемника необходимо лишь установить контуры входной цепи, гетеродина и усилителя радиочастоты.
Супергетеродинные радиоприемники, несмотря на сложность конструкции и настройки, стали общепризнанным стандартом в любительской и профессиональной радиосвязи.
Супериконоскоп
Супериконоскоп – это передающий электронно-лучевой прибор. Название супериконоскопа произошло от слияния слов
Супериконоскоп был изобретен в 1933 г. советскими изобретателями П. В. Шмаковым и П. В. Тимофеевым. Супериконоскоп состоит из слюдяной пластины, коллектора, двух анодов, мозаичного фотокатода, сигнальной пластины, колбы трубки, резистора, модулятора, отклоняющей системы, оптической системы и катода.
Первоначально супериконоскопу дали название «иконоскоп с переносом изображения», позднее его стали называть «трубкой Шмакова—Тимофеева», «имеджиконоскопом», «эрископом», «суперэмитроном».
Отличием супериконоскопа от простого иконоскопа является тот факт, что светочувствительная мозаика передающей телевизионной трубки заменяется на порядок более чувствительным сплошным фотокатодом. Кроме этого, в супериконоскоп добавилась сплошная мишень, и фотокатод с мишенью стали располагаться раздельно друг от друга в пространстве.
Благодаря вторичной эмиссии, при которой бомбардируются фотоэлектроны, перенося электронное изображение, на мишени супериконоскопа накапливается заряд и образуется потенциальный рельеф. Если освещенность равняется 400—1000 лк, то передача изображения с помощью супериконоскопа осуществляется качественно. Иногда возникает явление, считающееся основным недостатком супериконоскопа. На центральной части изображения появляется сигнал, имеющий вид темного пятна неправильной формы. Это пятно называется «черное пятно», чтобы его устранить или хотя бы ослабить, применяются специализированные корректирующие сигналы.
Действие супериконоскопа основывается на фотоэффекте. Преобразующим светочувствительным элементом при внешнем фотоэффекте выступает фотокатод, испускающий электроны при освещении, при внутреннем фотоэффекте – фоточувствительная мишень. Мишень меняет свою электропроводность при смене освещения. Электронный луч считывает со сверхчувствительного элемента изображение так, что оно раскладывается на некоторое количество строк, которые образуют собой телевизионный растр. Каждая из строк является последовательностью определенного элементарного участка изображения.
Супериконоскоп должен обладать довольно высокой чувствительностью, которая определяется освещением. Освещенность необходима для формирования видеосигнала с требуемым отношением сигнала и шума. Кроме этого, супериконоскоп должен иметь определенную спектральную характеристику сверхчувствительного элемента, передавать достаточное количество ступеней градации полутонов. Разрешающая способность в супериконоскопе должна быть высокой, инерционность малой, он должен удовлетворять требованиям равномерного распределения фона, в нем должны отсутствовать паразитные сигналы и др.