Подобное применение ЦВМ требовало расширения их функциональных возможностей и, как следствие, усложнения их структуры; полупроводниковая техника уже не отвечала современным требованиям развития ЦВМ как в отношении размеров и потребления энергии, так и в отношении их надежности и технологичности.
На смену ЦВМ второго поколения в 1960-х гг. пришли машины третьего поколения, сконструированные на базе интегральных микросхем. В ЦВМ второго поколения простейший блок собирался из отдельных деталей, которые соединялись друг с другом с помощью пайки. Такие блоки, хоть и значительно меньших размеров, чем ламповые панели машин первого поколения, все же обладали заметными размерами (до нескольких десятков, иногда сотен см3
), а места пайки становились источником частых отказов. Использование в ЦВМ интегральных микросхем дало возможность повысить насыщенность блоков ЦВМ без увеличения их габаритов. Если первые интегральные микросхемы (ИС) могли заменить один блок ЦВМ второго поколения, то большие интегральные микросхемы (БИС) – уже несколько десятков подобных блоков, и степень их насыщения постоянно росла. К электронным ЦВМ четвертого поколения часто относят машины, которые построены на БИС. Но такая классификация необоснованна, так как нет четкой границы между интегральными микросхемами простых размеров и средних размеров, между большими и средними, между сверхбольшими и большими. Значительно более важный фактор в совершенствовании электронных ЦВМ – изменение главных элементов оперативной памяти. Если ЦВМ первого, второго и третьего поколений содержат запоминающие устройства на базе ферритовых сердечников, то в ЦВМ четвертого поколения в качестве элементов памяти используются полупроводниковые приборы, производимые по технологии, аналогичной производству интегральных микросхем. Образцы подобной памяти небольшого объема изготавливались и применялись как сверхбыстродействующая память; в середине 1970-х гг. появилась тенденция создания оперативной памяти на полупроводниках и применения ферритовых запоминающих устройств как дополнительной медленной памяти.Для 1970-х гг. довольно характерно явление «поляризации» в технике ЦВМ: с одной стороны, использование вычислительных систем коллективного пользования приводит к изобретению сверхмощных машин с быстродействием порядка нескольких десятков млн операций/с и с огромными объемами оперативной памяти; с другой стороны, для личного использования, а также для обработки экспериментальных данных и управления технологическими процессами, в исследовательских лабораториях конструируются малые ЦВМ– малогабаритные машины со средним быстродействием. Мини-ЦВМ, которые линиями связи соединены с мощными вычислительными системами коллективного пользования, могут использоваться как терминалы. Приставка «мини» относится в основном к размерам машин. Обозначилась также тенденция к уменьшению выпуска машин средней мощности, так как мини-ЦВМ могут обеспечить решение большинства задач конкретного потребителя, а для решения сложных задач выгоднее использовать вычислительные системы коллективного пользования.
В конце 1960-х – начале 1970-х гг. сверхмощные ЦВМ становятся мультипроцессорными, другими словами, в одной подобной машине сосредоточивается несколько процессоров, действующих одновременно.
Преимущество мультипроцессорных систем для параллельного решения многих задач очевидно, однако наличие в одной вычислительной системе нескольких процессоров дает возможность разделить и процесс решения одной задачи, так как каждый реальный вычислительный алгоритм имеет ряд ветвей, выполнение которых может осуществляться независимо друг от друга, что дает довольно большое сокращение времени решения задачи. Мультипроцессорные ЦВМ, технологической основой которых являются БИС, нужно отнести к машинам четвертого поколения.
ЦВМ находят все большее применение в разных сферах человеческой деятельности. Главные области их применения: научно-технические расчеты, которые основаны на математических методах; экономические расчеты (экономико-статистический анализ, планирование, исследование операций, демографическая статистика, материальный и бухгалтерский учет); информационносправочная служба (научно-техническая информация, диспетчерская, библиотечная служба и др.); автоматизация проектирования технических объектов; математическое моделирование в гуманитарных науках: биологии, геологии, медицине, социологии и др.; автоматическое управление технологическими процессами, сложными экспериментальными установками, а также транспортными средствами.
Цифровая индикаторная лампа