Первый спутник связи был снабжен двумя параболическими остронаправленными антеннами с датчиками ориентации на Землю. Бортовая аппаратура состояла из радиокомплекса, измерительного комплекса, систем ориентации, различной научной аппаратуры для наблюдения Земли из космического пространства. В августе 1968 г. на конференции ООН в Вене был зачитан проект соглашения о создании Международной системы связи, использующей искусственные спутники Земли. Инициатором соглашения выступил Советский Союз совместно с другими странами социалистического лагеря.
Стартовое окно
Стартовое окно – термин, который описывает период времени, в течение которого необходимо осуществить запуск ракеты-носителя. Используется для выхода космического аппарата на какую-то определенную орбиту, время которого заранее рассчитывается. Например, в случае запуска космических аппаратов к другим планетам лучше всего дождаться максимального сближения планеты с Землей, в результате чего заметно сократится срок перелета к месту назначения. Если по каким-то причинам не удается в отведенное время осуществить запуск космического аппарата, то он откладывается до следующего благоприятного момента, т. е. до следующего стартового окна.
Телескоп
Телескоп (от греч.
Конструктивно и по принципу действия телескопы подразделяются на оптические, рентгеновские, гамма-телескопы, ультрафиолетовые, инфракрасные и радиотелескопы. Оптические же делятся на рефракторы (линзовые), рефлекторы (зеркальные) и комбинированные зеркально-линзовые системы. Первые конструкции телескопов обычно связывают с именами итальянского физика, математика и астронома Г. Галилея (1564—1642), гениального немецкого астронома И. Кеплера (1571—1630), хотя никто из них не был первым.
Первые записи, касающиеся конструкции примитивного телескопа, встречаются в XIII в. у Р. Бэкона, а в XVI в. – у Джанбаттисты дела Порте, который, кстати, долго оспаривал у Галилея права на изобретение зрительной трубы. Надо отдать должное Галилею, ведь он улучшил качество практически до совершенства, его линзы, сохранившиеся и до наших дней, считаются первоклассными с точки зрения современной оптики. Хотя из 300 линз, вручную им отшлифованных, он отобрал всего лишь несколько для конструкции телескопов. В ходе постоянного совершенствования Галилей добился 30-кратного увеличения, что является предельно возможным значением для телескопов такой конструкции. С таким увеличением ученый смог добиться первых результатов в астрономических наблюдениях. Это произошло в конце 1609 г. И уже 7 января 1610 г. Галилей обнаружил спутники Юпитера.
К сожалению, все наземные телескопы объединяет один огромный недостаток – искажение картинки под влиянием земной атмосферы. Атмосфера Земли рассеивает и поглощает излучения, в ней распадаются частицы, прилетающие не только со всех уголков Солнечной системы, но и из глубин Вселенной. Воздух, окружающий поверхность Земли, «дрожит», что приводит к размытию изображения, наблюдаемого через наземный телескоп. Чего нельзя сказать о приборах, находящихся за пределами земной атмосферы, т. е. в космическом пространстве. Материалы, используемые при создании космических телескопов, существенно различаются. Например, зеркала оптических телескопов изготавливаются из ситалла, который получается в ходе процесса, называемого объемной кристаллизацией стекла разного состава. Основным свойствами ситалла являются его высокая стойкость к тепловому расширению и высокая механическая прочность.
К современному телескопу можно подключать различные системы, позволяющие добиться великолепных результатов в наблюдениях. Так, например, можно подключить матрицы приборов с зарядовой связью, которые позволяют создавать полноцветное изображение объекта, подвергаемого наблюдению.
Цифровое изображение с помощью компьютера передается на Землю, где происходит дальнейшая обработка. Качество цифрового снимка не уступает фотографическому. Используя космические телескопы, человечество может проводить наблюдения в различных областях спектра.
Особенно трудными являются наблюдения в инфракрасном диапазоне спектра. Чтобы исключить влияние собственного теплового излучения телескопа и приемника излучения, их необходимо подвергать охлаждению вплоть до 0 К (-273 °С – температура абсолютного нуля).
На сегодняшний день ученые добились потрясающих результатов в этой области. С околоземной орбиты при помощи сложнейшей аппаратуры на поверхности Луны можно обнаружить объект, излучающий тепло, размером с монету.
С 1966 по 1972 г. в космосе работала так называемая орбитальная астрономическая лаборатория. Запуск этой лаборатории осуществляла NASA. Это была серия спутников, выполняющих функции космической обсерватории. Этими спутниками впервые были проведены наблюдения в ультрафиолетовом диапазоне волн различных космических объектов. Были проведены фотометрические работы по рентгеновской и гамма-астрономии.