Гравитационное влияние Луны оказывает огромное влияние на многие процессы, происходящие на Земле. Французский астроном Ж. Ласкар попытался на основе математического моделирования оценить, что случилось бы на Земле, если бы у нашей планеты не оказалось Луны. Главный вывод, который сделал ученый, – притяжение Луны стабилизирует климат нашей планеты. Одним только соседством с Землей Луна ограничивает колебания оси земного шара относительно плоскости эклиптики. Наклон оси, как известно, определяет смену времен года, то есть количество солнечной энергии, поступающей на те или иные широты в Северном и Южном полушариях. Расчеты Ж. Ласкара показали, что, не будь Луны, ось земного шара могла бы менять свой наклон по отношению к плоскости эклиптики в очень значительных пределах – от 0 до 85 градусов (в настоящее время ось наклонена на 23,5 градуса). При угле наклона 85 градусов картина была бы такая: Солнце подолгу стояло бы почти в зените над одним из земных полюсов, а противоположное полушарие столь же долго оставалось бы погруженным во тьму. Разность температур в полушариях вызвала бы чудовищные по силе ураганы и дожди, не уступающие по силе библейскому потопу. Правомерен даже такой драматический вопрос: а зародилась бы вообще жизнь на нашей планете, не будь у нее спутника – Луны?
Луна гораздо ярче Солнца, если смотреть на нее с помощью гамма-телескопа, улавливающего только гамма-лучи. Гамма-излучение – это коротковолновое электромагнитное излучение, на шкале электромагнитных волн граничащее с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение Луны обусловлено потоками космических лучей, которые, ударяясь о поверхность Луны, порождают его. Добраться же до поверхности Солнца космические лучи не в состоянии, так как их отклоняет мощное магнитное поле светила. Оно же не выпускает во внешнее пространство и гамма-лучи, возникающие в ходе ядерных реакций, протекающих в солнечных недрах. Земная атмосфера полностью непрозрачна для гамма-лучей, поэтому развитие гамма-астрономии (в том числе обнаружение гамма-излучения Луны) стало возможным только благодаря развитию космической техники.
В год может произойти от двух до пяти солнечных затмений (максимальное число солнечных затмений – пять – имело место в 1935 году и следующий раз повторится лишь в 2206 году). Лунных затмений на протяжении года может не быть вовсе (примерно каждые пять лет), а максимальное их число в год – три. Общее число солнечных и лунных затмений в год не может превышать семи: либо пять солнечных и два лунных, либо четыре солнечных и три лунных. В целом солнечные затмения случаются в 1,5 раза чаще лунных. Почему же за свою жизнь человек видит гораздо больше лунных затмений, чем солнечных? Это происходит оттого, что лунное затмение видно на всей половине Земли, обращенной к Луне, а солнечное – только в сравнительно узкой полосе затмения (не шире 270 километров). Поэтому для любого места на Земле солнечные затмения происходят в среднем раз в 200–300 лет. Так, например, в Москве ближайшее полное солнечное затмение произойдет лишь 16 октября 2126 года.
Преобладающим типом образований на лунной поверхности являются метеоритные кратеры самых разных размеров: от сотен километров до нескольких десятков сантиметров в диаметре. Самый большой из них – кратер Байи – имеет диаметр 300 километров. Для сравнения: крупнейший из предполагаемых земных ударных кратеров (в Садбери, Канада) имеет диаметр 140 километров.
Поляк Ян Гевелий (1611–1687), строго говоря, не был профессиональным астрономом. Получив образование юриста, он был городским советником в Гданьске. Но еще с гимназических лет Гевелий увлекся астрономией и именно в этой области увековечил свое имя. Один из лунных кратеров назван в честь Гевелия, потому что именно он первым составил первые точные детальные и художественно выполненные карты Луны, дал название многим деталям поверхности Луны, открыл оптическую либрацию Луны (видимые периодические маятнико-образные колебания Луны относительно ее центра).