Читаем Большая советская энциклопедия (-- - АБ) полностью

Абстра'кции при'нцип, логический принцип, лежащий в основе определений через абстракцию: любое отношение типа равенства, определённое на некотором исходном множестве элементов, разбивает (делит, классифицирует) исходное множество на попарно непересекающиеся классы равных (в данном отношении) элементов. Указанные классы называются классами абстракции данного отношения, а множество этих классов — фактормножеством исходного множества по данному отношению. А. п. выражает, т. о., процесс абстракции: если выделен класс в каком-либо смысле равных предметов (класс абстракции, или класс эквивалентности), то тем самым определён и «абстрактный» (произвольный) предмет этого класса, поскольку с точки зрения целей, определяющих данное отношение равенства, каждый «конкретный» предмет исходного множества понимается в качестве «абстрактного» предмета — носителя свойства, общего всем элементам данного класса абстракции. Посредством А. п. вводятся в качестве абстрактных объектов не только «представители» классов абстракции, получаемых при разбиении каким-либо отношением R исходного множества Z, но и сами эти классы. Например, если Z — множество всех прямых (плоскости или пространства), а R — отношение параллельности, то класс абстракции произвольной прямой a1из Z по R — это класс всех прямых из Z, параллельных a1, класс абстракции a2 из Z по R — класс прямых, параллельных a2, и т. д. Но тем самым в качестве нового «объекта» вводится новое понятие направления. И именно так фактически формируются любые абстрактные понятия. Например, понятие непрерывной функции есть один из классов абстракции, порождающихся разбиением множества всех (числовых) функций отношением типа эквивалентности, связывающим все функции, удовлетворяющие определению непрерывности (и только такие функции). В этом типичном случае фактормножество состоит всего из двух элементов: «непрерывная (функция)» и «разрывная», и А. п. принимает здесь форму утверждения о допустимости рассматривать корректным образом класс непрерывных функций (или понятие непрерывности). Второй фигурирующий в этом примере класс абстракции (приводящий к формированию отрицательного понятия разрывности) является дополнением первого и явным образом не участвует в формулировке данного применения А. п. (впрочем, «отрицательность» второго понятия несущественна: при разбиениях чисел на чётные и нечётные, людей на мужчин и женщин, позвоночных на теплокровных и холоднокровных и т. п., оба вводимых понятия равноправны). Такая форма А. п. (которой часто присваивают наименование принципа свёртывания), утверждающая «существование» абстрактного класса (множества) всех объектов, удовлетворяющих произвольному разумным образом охарактеризованному свойству (предикату), играет основополагающую роль в теории множеств (о возникающих в связи с этим принципом проблемах, см. Аксиоматическая теория множеств и литературу к этой статье).

  М. М. Новосёлов.

Абстракция

Абстра'кция (от латинского abstractio — отвлечение),

  1) метод научного исследования, основанный на том, что при изучении некоторого явления, процесса не учитываются его несущественные стороны и признаки; это позволяет упрощать картину изучаемого явления и рассматривать его как бы в «чистом виде».

  2) Продукт познания (понятие, описание, закон, модель, идеальный объект и т. п.), рассмотренный в сопоставлении с конкретной эмпирической действительностью, которая не фиксируется в этом продукте во всём богатстве своих свойств и связей.

  3) Познавательная деятельность — процесс абстрагирования, — направленная на получение А.

  Применение А., как и всякого метода исследования, определяется типом ситуации, с которой сталкивается исследователь, и перечнем процедур, необходимых или допустимых в данной ситуации. Ситуация характеризуется задачей (целевая характеристика метода) и спецификой изучаемого объекта (онтологическая характеристика). С точки зрения онтологии А. связана с представлением об относительной независимости явлений и их сторон и с отделением существенных сторон от несущественных. Предписываемые процедуры сводятся, как правило, к перестройке предмета исследования, к эквивалентному, с точки зрения данной ситуации, замещению первоначального предмета другим. Перестройка касается либо изображения изучаемого объекта (отбрасывание несущественных сторон), либо эмпирического материала, либо программы наблюдения и описания (отказ от лишней информации). Например, геометрические свойства электрической цепи не зависят от составляющих элементов ветви, таких, как сопротивление, индуктивность и ёмкость, поэтому при топологическом изучении цепей все ветви цепи обычно заменяют отрезками, изображая цепь в виде линейного графа (см. Графов теория).

Перейти на страницу:

Похожие книги

100 знаменитых символов советской эпохи
100 знаменитых символов советской эпохи

Советская эпоха — яркий и очень противоречивый период в жизни огромной страны. У каждого из нас наверняка своё ощущение той эпохи. Для кого-то это годы спокойствия и глубокой уверенности в завтрашнем дне, это время, когда большую страну уважали во всём мире. Для других, быть может, это период страха, «железного занавеса», время, бесцельно потраченное на стояние в бесконечных очередях.И всё-таки было то, что объединяло всех. Разве кто-нибудь мог остаться равнодушным, когда из каждой радиоточки звучали сигналы первого спутника или когда Юрий Левитан сообщал о полёте Юрия Гагарина? Разве не наворачивались на глаза слёзы, когда олимпийский Мишка улетал в московское небо? И разве не переполнялась душа гордостью за страну, когда наши хоккеисты побеждали родоначальников хоккея канадцев на их же площадках или когда фигуристы под звуки советского гимна стояли на верхней ступени пьедестала почёта?Эта книга рассказывает о тех знаменательных событиях, выдающихся личностях и любопытных деталях, которые стали символами целой эпохи, ушедшей в прошлое…

Андрей Юрьевич Хорошевский

История / Энциклопедии / Образование и наука / Словари и Энциклопедии