А. т., схема которой приведена на рис. 1
, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления. Согласно теории подобия, для того чтобы аэродинамические коэффициенты у модели и натуры (самолёта, ракеты и т. п.) были равны, необходимо, кроме геометрического подобия, иметь одинаковые значения чисел М
и Рейнольдса числа Re в А. т. и в полёте (Re = rvl/m, r — плотность среды, m — динамич. вязкость, l — характерный размер тела). Чтобы обеспечить эти условия, энергетическая установка, создающая поток газа в А. т., должна обладать достаточной мощностью (мощность энергетической установки пропорциональна числу М, квадрату числа Re и обратно пропорциональна статическому давлению в рабочей части pc.
Сверхзвуковые аэродинамические трубы. В общих чертах схемы сверхзвуковой и дозвуковой А. т. аналогичны (рис. 1 и 3). Для получения сверхзвуковой скорости газа в рабочей части А. т. применяют т. н. сопло Лаваля, которое представляет собой сначала сужающийся, а затем расширяющийся канал. В сужающейся части скорость потока увеличивается и в наиболее узкой части сопла достигает скорости звука, в расширяющейся части сопла скорость становится сверхзвуковой и увеличивается до заданного значения, соответствующего числу М в рабочей части. Каждому числу М отвечает определённый контур сопла. Поэтому в сверхзвуковых А. т. для изменения числа М в рабочей части применяют сменные сопла или сопла с подвижным контуром, позволяющим менять форму сопла. В диффузоре сверхзвуковой А. т. скорость газа должна уменьшаться, а давление и плотность возрастать, поэтому его делают, как и сопло, в виде сходящегося — расходящегося канала. В сходящейся части сверхзвуковая скорость течения уменьшается, а в некотором сечении возникает скачок уплотнения (ударная волна
), после которого скорость становится дозвуковой. Для дальнейшего замедления потока контур трубы делается расширяющимся, как у обычного дозвукового диффузора. Для уменьшения потерь диффузоры сверхзвуковых А. т. часто делают с регулируемым контуром, позволяющим изменять минимальное сечение диффузора в процессе запуска установки. В сверхзвуковой А. т. потери энергии в ударных волнах, возникающих в диффузоре, значительно больше потерь на трение и вихреобразование. Кроме того, значительно больше потери при обтекании самой модели, поэтому для компенсации этих потерь сверхзвуковые А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвуковые А. т.
В сверхзвуковом сопле по мере увеличения скорости воздуха уменьшаются его температура Т
и давление р, при этом относительная влажность воздуха, обычно содержащего водяные пары, возрастает, и при числе М » 1,2 происходит конденсация пара, сопровождающаяся образованием ударных волн — скачков конденсации, существенно нарушающих равномерность поля скоростей и давлений в рабочей части А. т. Для предотвращения скачков конденсации влага из воздуха, циркулирующего в А. т., удаляется в специальных осушителях 11. Одним из основных преимуществ сверхзвуковых А. т., осуществляемых по схеме рис. 3
, является возможность проведения опытов значительной продолжительности. Однако для многих задач аэродинамики это преимущество не является решающим. К недостаткам таких А. т. относятся: необходимость иметь энергетические установки большой мощности, а также трудности, возникающие при числах М > 4 вследствие быстрого роста требуемой степени сжатия компрессора. Поэтому широкое распространение получили т. н. баллонные А. т., в которых для создания перепада давлений перед соплом помещают баллоны высокого давления, содержащие газ при давлении 100 Мн/м2(1000 кгс/см2), а за диффузором — вакуумные ёмкости (газгольдеры), откачанные до абсолютного давления 100—0,1 н/м2(10-3—10-6кгс/см2), или систему эжекторов (рис. 4). Одной из основных особенностей А. т. больших чисел М
(М > 5) является необходимость подогрева воздуха во избежание его конденсации в результате понижения температуры с ростом числа М. В отличие от водяных паров, воздух конденсируется без заметного переохлаждения. Конденсация воздуха существенно изменяет параметры струи, вытекающей из сопла, и делает её практически непригодной для аэродинамического эксперимента. Поэтому А. т. больших чисел М имеют подогреватели воздуха. Температура T, до которой необходимо подогреть воздух, тем больше, чем больше число М в рабочей части А. т. и давление перед соплом p. Например, для предотвращения конденсации воздуха в А. т. при числах М » 10 и p » 5 Мн/м2(50 кгс/см2) необходимо подогревать воздух до абсолютной температуры T » 1000 К.