Аннигиля'ция и рожде'ние пар
частица-античастица. В физике термин «аннигиляция» [буквально означающий «исчезновение», «уничтожение» (лат. annihilatio, от ad — к и nihil — ничто)] принят для наименования процесса, в котором частица и отвечающая ей античастица превращаются в электромагнитное излучение — фотоны или в другие частицы — кванты физического поля иной природы (см. Поля физические). Рождение пары — это обратный процесс, при котором в результате взаимодействия электромагнитных или других полей одновременно возникают частица и античастица. Например, при соударении электрона и его античастицы — позитрона — оба они могут исчезнуть, образовав два фотона (гамма-кванта); столкновение протона и антипротона может привести к их взаимоуничтожению, которое сопровождается одновременным появлением нескольких гораздо более лёгких частиц, квантов ядерного поля — пи-мезонов; гамма-квант, если он обладает достаточно большой энергией, может, взаимодействуя с электрическим полем атомного ядра, породить пару электрон-позитрон (см. рис.). Таким образом, речь идёт не об уничтожении или самопроизвольном возникновении материи, а лишь о взаимопревращениях частиц. Эти взаимопревращения управляются фундаментальными законами сохранения, такими, как законы сохранения энергии и количества движения (импульса), момента количества движения, электрического заряда, числа лептонов, числа барионов и др. (см. Сохранения законы).
Возможность А. и р. п., как и само существование античастиц, была теоретически предсказана в 1930 английским физиком П. Дираком: они вытекали из развитой им теории электрона. В 1932 американский Физик К. Андерсон экспериментально доказал существование позитронов в космических лучах. В 1933 Ирен и Фредерик Жолио-Кюри с помощью Вильсона камеры, помещенной в магнитное поле, наблюдали рождение электрон-позитронных пар гамма-квантами от радиоактивного источника. В том же году были надёжно зарегистрированы случаи аннигиляции пар электрон-позитрон. Современное истолкование А. и р. п. даёт квантовая теория поля
.
Открытие А. и р. п. представляет глубокий интерес не только с точки зрения физики. Оно имеет важное философское значение. Впервые в истории естествознания было доказано, что не существует неделимых частиц — последних «кирпичей мироздания», из которых формируются все материальные объекты, как думали до 30-х гг. 20 в. Любая форма материи может превращаться в другие формы. Аннигиляция пары электрон-позитрон.
Попав в вещество, позитрон практически полностью теряет скорость из-за потерь энергии на ионизацию атомов. Поэтому непосредственно перед аннигиляцией позитрон можно считать покоящимся, т. е. позитрон и «обречённый на уничтожение» электрон находятся, скорее всего, в состоянии, в котором момент количества движения (относительного) этих частиц равен нулю. Дальнейшая судьба пары определяется взаимной ориентацией внутренних моментов количества движения частиц — их спинов. Если спины электрона и позитрона (равные 1/2), направлены в противоположные стороны, т. е. их суммарный спин равен нулю, то в результате аннигиляции может образоваться лишь чётное число фотонов: запрет на образование нечётного числа фотонов связан с одним из законов сохранения, — законом сохранения так называемой зарядовой чётности (см. Зарядовое сопряжение). Однако вероятность аннигиляции с появлением четырёх и более фотонов ничтожно мала, и подавляющее большинство пар аннигилирует, образуя два фотона. Образовавшиеся фотоны летят в противоположные стороны, и каждый из них забирает половину первоначальной энергии системы электрон-позитрон, т. е. примерно энергию покоя электрона mс2 = 0,51 Мэв (m — масса электрона, с — скорость света в вакууме). (Согласно теории относительности А. Эйнштейна, с массой М покоящейся частицы связана энергия E0 = Mc2, которая и называется энергией покоя.) Если же перед аннигиляцией спины электрона и позитрона оказываются параллельными, так что их суммарный спин равен 1, то возможно лишь образование нечётного числа, а практически — трёх фотонов (аннигиляция свободных электрона и позитрона с излучением одного фотона запрещена законом сохранения импульса). Трёхфотонная аннигиляция происходит гораздо реже, чем двухфотонная: в среднем лишь два-три из каждой тысячи попавших в вещество позитронов аннигилируют в три фотона.