Читаем Большая Советская Энциклопедия (АТ) полностью

  Для различных состояний А. водорода получается и различное распределение электронной плотности. Оно зависит от квантовых чисел n, l и /mi/. При этом электронная плотность для s-cocтояний (l = 0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l > 0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний А. водорода с n = 1, 2 и 3 показано на рис. 3 (оно получено фотографированием специальных моделей); размеры «электронного облака» растут примерно пропорционально n2(масштаб на рис. 3 уменьшается при переходе от n = 1 к n = 2 и от n = 2 к n = 3), что соответствует увеличению радиуса орбит по формуле (6) в теории Бора.

  Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами n, l, ml и ms, что и в А. водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз и на рис. 3 масштабы нужно уменьшить также в Z раз. Соответственно уменьшаются и размеры орбит.

  Действие внешних полей на уровни энергии атома водорода. Во внешнем электрическом и магнитном полях А. как электрическая система приобретает дополнительную энергию. Электрическое поле поляризует А. — смещает электронное облако относительно ядра, а магнитное поле ориентирует определённым образом магнитный момент А., связанный с движением электрона вокруг ядра (с орбитальным моментом Ml) и его спином. Различным состояниям А. водорода с той же энергией Еn во внешнем поле соответствует различная дополнительная энергия DE и вырожденный уровень энергии Еn расщепляется на ряд подуровней (рис. 4). Как расщепление в электрическом поле — Штарка явление, так и расщепление в магнитном поле — Зеемана явление, для уровней энергии А. водорода пропорциональны напряжённости полей.

  К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри А. Для А. водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие — взаимодействие спинового и орбитального моментов электрона, не учитываемое при выводе основной формулы (4); оно обусловливает т.н. тонкую структуру уровней энергии — расщепление возбуждённых уровней Еn (при n > 1) на подуровни. Наиболее точные исследования тонкой структуры методами радиоспектроскопии показали наличие т. н. сдвига уровней, объясняемого в квантовой электродинамике.

  Для всех уровней энергии А. водорода наблюдается и сверхтонкая структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами. Уровень E1 расщепляется на 2 подуровня с расстоянием между ними примерно 5 10—6 эв.

  Электронные оболочки сложных атомов. Теория сложных А., содержащих 2 или более электронов, принципиально отличается от теории А. водорода, т. к. в сложном А. имеются взаимодействующие друг с другом одинаковые частицы — электроны. Взаимное отталкивание электронов в многоэлектронном А. существенно уменьшает прочность их связи с ядром. Например, энергия отрыва единственного электрона в ионе гелия (Не+) равна 54,4 эв, в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эв. Для внешних электронов более тяжёлых А. уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Чрезвычайно важную роль в сложных А. играют свойства электронов как одинаковых микрочастиц (см. Тождественности принцип), обладающих спином s = 1/2, для которых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что для сложного А. приводит к образованию электронных оболочек, заполняющихся строго определёнными числами электронов.

  Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях А. в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью четырёх квантовых чисел n, l, ml и ms, аналогично электрону в А. водорода. При этом энергия электрона оказывается зависящей не только от n, как в А. водорода, но и от l; от ml; и ms она по-прежнему не зависит. Электроны с данными n и l в сложном А. имеют одинаковую энергию и образуют определённую электронную оболочку; их называют эквивалентными электронами. Такие электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и l, символами ns, nр, nd, nf, ... (для l = 0, 1, 2, 3 ....) и говорят о 2р-электронах, 3s-oболочках и т. п.

Перейти на страницу:

Похожие книги

100 великих казаков
100 великих казаков

Книга военного историка и писателя А. В. Шишова повествует о жизни и деяниях ста великих казаков, наиболее выдающихся представителей казачества за всю историю нашего Отечества — от легендарного Ильи Муромца до писателя Михаила Шолохова. Казачество — уникальное военно-служилое сословие, внёсшее огромный вклад в становление Московской Руси и Российской империи. Это сообщество вольных людей, создававшееся столетиями, выдвинуло из своей среды прославленных землепроходцев и военачальников, бунтарей и иерархов православной церкви, исследователей и писателей. Впечатляет даже перечень казачьих войск и формирований: донское и запорожское, яицкое (уральское) и терское, украинское реестровое и кавказское линейное, волжское и астраханское, черноморское и бугское, оренбургское и кубанское, сибирское и якутское, забайкальское и амурское, семиреченское и уссурийское…

Алексей Васильевич Шишов

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии