Читаем Большая Советская Энциклопедия (БЕ) полностью

Бе'ссель (Bessel) Фридрих Вильгельм (22.7.1784, Минден, — 17.3.1846, Кенигсберг), немецкий астроном, член Берлинской АН (1812). Двадцати лет вычислил орбиту кометы Галлея. В 1806 получил место ассистента в частной обсерватории в Лилиентале. Здесь Б. заново обработал данные наблюдений Дж. Брадлея , из которых определил постоянные рефракции, прецессии и нутации, по точности превзошедшие все прежние определения. В 1810 стал профессором Кёнигсбергского университета и построил здесь обсерваторию, директором которой оставался до самой смерти. На меридианном круге этой обсерватории Б. произвёл наблюдения 75011 звёзд между +47° и —16° склонения. Б. разработал теорию ошибок астрономических инструментов, открыл личное уравнение, т. е. систематическую ошибку, присущую данному наблюдателю. При обработке наблюдений Б. применял теорию вероятностей и способ наименьших квадратов. В 1838 при помощи гелиометра определил параллакс звезды 61 Лебедя, измерив т. о. расстояние до неподвижных звёзд. Разработал теорию солнечных затмений, определил массы планет и элементы спутников Сатурна. Большое значение имеют также работы Б. в области геодезии. В частности, совместно с И. Байером произвёл триангуляцию в Восточной Пруссии и на основании десяти лучших градусных измерений определил элементы земного сфероида. Им был изобретён базисный прибор .

  В математике имя Б. носят т. н. цилиндрические функции 1-го рода (см. Бесселя функции ) и дифференциальное уравнение, которому они удовлетворяют (см. Бесселя уравнение ), неравенство для коэффициентов ряда Фурье (см. Бесселя неравенство ), а также одна из интерполяционных формул.

  Соч.: Abhandlungen..., Bd 1—3, Lpz., 1875—76: в рус. пер. — Популярные чтения о научных предметах, М., 1859.

  Лит.: Кларк А., Общедоступная история астрономии в XIX столетии, пер. с англ., Одесса, 1913.

Ф. В. Бессель.

Бесселя неравенство

Бе'сселя нера'венство, неравенство для коэффициентов ряда Фурье (см. Фурье ряд ) по произвольной ортонормированной системе функций jk (x ) (k = 1, 2...), т. е. системе, определённой на некотором отрезке [а, b ] и удовлетворяющей условиям (k ¹ l )

Если функция f (x ) измерима на отрезке [а, b ], а функция f2 (x ) интегрируема на этом отрезке и

  — ряд Фурье f (x ) по системе jk (x ), то справедливо Б. н.

Б. н. играет важную роль во всех исследованиях, относящихся к теории ортогональных рядов. В частности, оно показывает, что коэффициенты Фурье функции f (x ) стремятся к нулю при n ® ¥. Для тригонометрической системы функций это неравенство было получено Ф. Бесселем (1828). Если система функций jk такова, что для любой функции f Б. н. обращается в равенство, то оно называется Парсеваля равенством .

  С. Б. Стечкин.

Бесселя уравнение

Бе'сселя уравнение, линейное дифференциальное уравнение 2-го порядка вида

  x 2 y ’’ + xy ’ + (x 2 - p 2 ) y = 0,

  где параметр («индекс») р может принимать произвольные (комплексные) значения (названо по имени Ф. Бесселя ). К этому уравнению приводят многочисленные физические задачи. Решения Б. у. называются цилиндрическими функциями ; о специальном классе цилиндрических функций см. статью Бесселя функции .

  П. И. Лизоркин.

Бесселя функции

Бе'сселя функции,цилиндрические функции 1-го рода; возникают при рассмотрении физических процессов (теплопроводности, диффузии, колебаний и пр.) в областях с круговой и цилиндрической симметрией; являются решениями Бесселя уравнения .

  Б. ф. Jp порядка (индекса) р, — ¥ < p < ¥, представляется рядом

сходящимся при всех х. Её график при х > 0 имеет вид затухающего колебания; J p (x ) имеет бесчисленное множество нулей; поведение J p (x ) при малых |х | даётся первым слагаемым ряда (*), при больших х > 0 справедливо асимптотическое представление

в котором отчётливо проявляется колебательный характер функции. Б. ф. «полуцелого» порядка р = n + 1 /2 выражаются через элементарные функции; в частности,

Б. ф. J p (mp n x/l ) (где mp n — положительные нули J p (x ), р > -1 /2 ) образуют ортогональную с весом х в промежутке (0, l ) систему (см. Ортогональная система функций ).

  Функция J 0 была впервые рассмотрена Д. Бернулли в работе, посвященной колебанию тяжёлых цепей (1732). Л. Эйлер , рассматривая задачу о колебаниях круглой мембраны (1738), пришёл к уравнению Бесселя с целыми значениями р = n и нашёл выражение J„ (x ) в виде ряда по степеням х. В последующих работах он распространил это выражение на случай произвольных значений р. Ф. Бессель исследовал (1824) функции Jp (x ) в связи с изучением движения планет вокруг Солнца. Он составил первые таблицы для J 0 (x ), J 1 (x ), J 2 (x ).

Перейти на страницу:

Похожие книги