Читаем Большая Советская Энциклопедия (БО) полностью

от её математического ожидания na растут как

 

Этот факт (называемый в упрощённых популярных изложениях «законом корня квадратного из n ») даёт некоторое, хотя и грубое, представление о характере действия Б. ч. з.

  Наглядное объяснение смысла и значения Б. ч. з. даёт следующий пример. Пусть в замкнутом сосуде заключено N молекул газа. В соответствии с кинетической теорией каждая молекула беспорядочно движется внутри сосуда, испытывая множество столкновений с другими молекулами и стенками сосуда. Ударяясь о какую-либо площадку s стенки в течение выбранного промежутка времени в t секунд, отдельная молекула сообщает этой площадке импульс fk (см. Ударный импульс ). Импульс fk является типичной случайной величиной, т.к. состояние рассматриваемого газа определяет лишь математическое ожидание а = E (fk ) этого импульса, фактическое же значение импульса данной молекулы за данный промежуток времени может быть самым различным (начиная от нуля — в случае, если за данный промежуток времени данная молекула не ударялась о площадку s). Сумма

 

импульсов всех молекул, сообщаемых площадке s за данный промежуток времени, является также случайной величиной с математическим ожиданием, равным А = Na. Однако в силу Б. ч. з. (который проявляется здесь с исключительной точностью благодаря тому, что число N очень велико) F в действительности оказывается почти независимым от случайных обстоятельств движения отдельных молекул, а именно — почти точно равным своему математическому ожиданию А. Этим, с точки зрения кинетической теории, и объясняется тот факт, что давление газа на площадку s является практически строго постоянным, а не колеблется беспорядочно.

  Часто приходится применять Б. ч. з. и в такой обстановке, когда количество случайных слагаемых не столь велико, как в примере с газовыми молекулами; тогда отклонения суммы случайных величин от её математического ожидания могут быть значительными. В этом случае крайне важно уметь оценивать размеры этих отклонений. Пусть, например, из 1000 партий каких-либо изделий, по 100 шт. в каждой, взято для испытания наудачу по 10 шт. из каждой партии и среди испытанных 10 000 шт. обнаружено 125 дефектных. Если обозначить nк число дефектных изделий в k-й партии, то общее число дефектных изделий равно

 

математическое ожидание числа дефектных изделий среди тех десяти, которые взяты для испытаний из k-й партии, равно Sk = (10 /100 ) nk , а математическое ожидание общего числа дефектных изделий в 1000 пробах по 10 штук равно

 

В силу Б. ч. з. естественно считать, что n /10 ~ 125, т. е. среди 100 000 изделий во всех партиях имеется приблизительно 1250 дефектных. Более точное исследование с помощью теории вероятностей приводит к такому результату: если выборка изделий из каждой партии была действительно случайной, то можно с достаточной уверенностью утверждать, что фактически 1000 < n < 1500, но уже оценка 1100 < n < 1400 не была бы достаточно надёжной, а для оценки 1200 < n < 1300 совсем не имеется серьёзных оснований. Получить более точную оценку для n можно, лишь испытав большее число изделий.

  Условие независимости слагаемых в большинстве применений Б. ч. з. если и выполняется, то лишь с тем или иным приближением. Так, уже в первом примере движения отдельных молекул газа нельзя, строго говоря, считать независимыми. Поэтому важно исследование условий применимости Б. ч. з. к случаю зависимых слагаемых. Основные математические работы в этом направлении принадлежат А. А. Маркову , С. Н. Бернштейну и А. Я. Хинчину . Качественно результаты их исследований сводятся к тому, что Б. ч. з. применим, если между слагаемыми с далёкими номерами зависимость достаточно слаба. Таково, например, положение в рядах метеорологических наблюдений над температурой или давлением воздуха.

  Математическая сторона вопросов, связанных с Б. ч. з., освещена также в ст. Предельные теоремы теории вероятностей и Вероятностей теория . В применениях Б. ч. з. необходимо тщательно проверять соответствие условий его применимости реальной обстановке.

  Лит.: Bernoulli J., Ars conjectandi, opus posthumum, Basileae, 1713 (в рус. пер.— Часть 4 соч. Я. Бернулли..., СПБ, 1913); Poisson S.-D., Recherches sur la probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilités, P., 1837; Чебышев П. Л., О средних величинах, Полн. собр. соч., т. 2, М.—Л., 1947, с. 431—37; Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965.

  Л. Н. Колмогоров.

Больших чисел закон (экономич.)

Перейти на страницу:

Похожие книги

100 великих казаков
100 великих казаков

Книга военного историка и писателя А. В. Шишова повествует о жизни и деяниях ста великих казаков, наиболее выдающихся представителей казачества за всю историю нашего Отечества — от легендарного Ильи Муромца до писателя Михаила Шолохова. Казачество — уникальное военно-служилое сословие, внёсшее огромный вклад в становление Московской Руси и Российской империи. Это сообщество вольных людей, создававшееся столетиями, выдвинуло из своей среды прославленных землепроходцев и военачальников, бунтарей и иерархов православной церкви, исследователей и писателей. Впечатляет даже перечень казачьих войск и формирований: донское и запорожское, яицкое (уральское) и терское, украинское реестровое и кавказское линейное, волжское и астраханское, черноморское и бугское, оренбургское и кубанское, сибирское и якутское, забайкальское и амурское, семиреченское и уссурийское…

Алексей Васильевич Шишов

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии
100 великих полководцев древности
100 великих полководцев древности

Прошлое предстает перед нами сплошным калейдоскопом, в котором мелькают большие и малые войны, походы, битвы на суше и море, осады и штурмы крепостей и городов. Письменные источники оставили нам имена людей, которые стали неотъемлемой частью мировой истории. Хаммурапи и Тутмос III, Ашшурбанипал и Александр Македонский, Юлий Цезарь и Мухаммед, Карл Великий и Святослав Игоревич… Их полководческий гений приводил к знаковым изменениям на политической карте мира. Леонид I и Лисандр, Ганнибал Барка и Сунь Пин, Спартак и Олег Вещий – они не перекраивали карту Евразии, однако их деяния стали вершиной воинского искусства. Известный историк и писатель Алексей Шишов повествует о жизни ста великих полководцах древности, чьи деяния приводили к гибели или возвышению народов и государств.

Алексей Васильевич Шишов

Детективы / Военное дело / Военная история / История / Энциклопедии / Словари и Энциклопедии