Однако основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики, её связи с классической физикой был необходим дальнейший глубокий анализ соотношения классического (макроскопического) и квантового (микроскопического — на атомном и субатомном уровнях) материальных объектов, процесса измерения характеристик микрообъекта и вообще физического содержания используемых в теории понятий. Этот анализ потребовал напряжённой работы, в которой ведущую роль сыграл Б. Его институт стал центром такого рода исследований. Главная идея Б. заключалась в том, что заимствованные из классической физики динамические характеристики микрочастицы (например, электрона) — её координата, импульс (количество движения), энергия и др. — вовсе не присущи частице самой по себе. Смысл и определённое значение той или иной характеристики электрона, например его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Эта идея имеет не только принципиальное физическое, но и философское значение. В результате была создана последовательная, чрезвычайно общая теория, внутренне непротиворечиво объясняющая все известные процессы в микромире для нерелятивистской области (т. е. пока скорости частиц малы по сравнению со скоростью света) и в предельном случае автоматически ведущая к классическим законам и понятиям, когда объект становится макроскопическим. Были также заложены основы релятивистской теории.
В 1927 Б. дал формулировку важнейшего принципа — принципа дополнительности, утверждающего невозможность при наблюдении микромира совмещения приборов двух принципиально различных классов, соответственно тому, что в микромире нет таких состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга. Это в свою очередь обусловлено тем, что не существует таких наборов классических объектов (измерительных приборов), в связи с которыми микрообъект обладал бы одновременно точными значениями всех динамических величин (см.
В 1936 Б. сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций (модель составного ядра). В 1939 совместно с Дж. А. Уилером он развил теорию деления ядер — процесса, в котором происходит освобождение огромных количеств ядерной энергии. В 40—50-х гг. Б. занимался в основном проблемой взаимодействия элементарных частиц со средой.
Б. создал большую школу физиков и многое сделал для развития сотрудничества между физиками всего мира. Институт Б. стал одним из важнейших мировых научных центров. Выросшие в этом институте физики работают почти во всех странах мира. В своём институте Б. принимал также советских учёных, многие из которых работали там подолгу. Б. неоднократно приезжал в СССР и в 1929 был избран иностранным членом АН СССР. Он являлся членом Датского королевского научного общества (с 1917), а также членом многих академий и научных обществ мира. Лауреат Нобелевской премии (1922).
Соч.: Das Quantenpostulat und die neuere Entwicklung der Atomistik, «Naturwissenschaften», 1928, H. 15, S. 245; Neutron capture and nuclear constitution, «Nature», 1936, v. 137, № 3461, p. 344; The mechanism of nuclear fission, «Physical Review», 1939, v. 56, p. 426 (совм. с J. A. Wheeler); в рус. пер. — Три статьи о спектрах и строении атомов, М., 1923; Прохождение атомных частиц через вещество, М., 1950; Атомная физика и человеческое познание, М., 1962.
Н. Бор.
Бор Оге
Бор
(Bohr) Оге (р. 19.6.1922, Копенгаген), датский физик, член Датской АН (1955). Сын Н.Бор (род растений сем. злаков)