Читаем Большая Советская Энциклопедия (ДЕ) полностью

  Чувствительность методов рентгенодефектоскопии определяется отношением протяжённости дефекта в направлении просвечивания к толщине детали в этом сечении и для различных материалов составляет 1—10%. Применение рентгенодефектоскопии эффективно для деталей сравнительно небольшой толщины, т.к. проникающая способность рентгеновских лучей с увеличением их энергии возрастает незначительно. Рентгенодефектоскопию применяют для определения раковин, грубых трещин, ликвационных включений в литых и сварных стальных изделиях толщиной до 80 мм и в изделиях из лёгких сплавов толщиной до 250 мм. Для этого используют промышленные рентгеновские установки с энергией излучения от 5—10 до 200—400 кэв (1 эв = 1,60210 · 10-19 дж). Изделия большой толщины (до 500 мм) просвечивают сверхжёстким электромагнитным излучением с энергией в десятки Мэв, получаемым в бетатроне.

  Гамма-дефектоскопия имеет те же физические основы, что и рентгенодефектоскопия, но используется излучение гамма-лучей, испускаемых искусственными радиоактивными изотопами различных металлов (кобальта, иридия, европия и др.). Используют энергию излучения от нескольких десятков кэв до 1—2 Мэв для просвечивания деталей большой толщины (рис. 2). Этот метод имеет существенные преимущества перед рентгенодефектоскопией: аппаратура для гамма-дефектоскопии сравнительно проста, источник излучения компактный, что позволяет обследовать труднодоступные участки изделий. Кроме того, этим методом можно пользоваться, когда применение рентгенодефектоскопии затруднено (например, в полевых условиях). При работе с источниками рентгеновского и гамма-излучений должна быть обеспечена биологическая защита.

  Радиодефектоскопия основана на проникающих свойствах радиоволн сантиметрового и миллиметрового диапазонов (микрорадиоволн), позволяет обнаруживать дефекты главным образом на поверхности изделий обычно из неметаллических материалов. Радиодефектоскопия металлических изделий из-за малой проникающей способности микрорадиоволн ограничена (см. Скин-эффект). Этим методом определяют дефекты в стальных листах, прутках, проволоке в процессе их изготовления, а также измеряют их толщину или диаметр, толщину диэлектрических покрытий и т.д. От генератора, работающего в непрерывном или импульсном режиме, микрорадиоволны через рупорные антенны проникают в изделие и, пройдя усилитель принятых сигналов, регистрируются приёмным устройством.

  Инфракрасная Д. использует инфракрасные (тепловые) лучи (см. Инфракрасное излучение) для обнаружения непрозрачных для видимого света включений. Так называемое инфракрасное изображение дефекта получают в проходящем, отражённом или собственном излучении исследуемого изделия. Этим методом контролируют изделия, нагревающиеся в процессе работы. Дефектные участки в изделии изменяют тепловой поток. Поток инфракрасного излучения пропускают через изделие и регистрируют его распределение теплочувствительным приёмником. Неоднородность строения материалов можно исследовать также методом ультрафиолетовой Д.

  Магнитная Д. основана на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов. Индикатором может служить магнитный порошок (закись-окись железа) или его суспензия в масле с дисперсностью частиц 5—10 мкм. При намагничивании изделия порошок оседает в местах расположения дефектов (метод магнитного порошка). Поле рассеяния можно фиксировать на магнитной ленте, которую накладывают на исследуемый участок намагниченного изделия (магнитографический метод). Используют также малогабаритные датчики (феррозонды), которые при движении по изделию в месте дефекта указывают на изменения импульса тока, регистрирующиеся на экране осциллоскопа (феррозондовый метод).

  Чувствительность метода магнитной Д. зависит от магнитных характеристик материалов, применяемых индикаторов, режимов намагничивания изделий и др. Методом магнитного порошка можно обнаруживать трещины и др. дефекты на глубине до 2 мм (рис. 3), магнитографическим методом контролируют главным образом сварные швы трубопроводов толщиной до 10—12 мм и обнаруживают тонкие трещины и непровар. Феррозондовый метод наиболее целесообразен для обнаружения дефектов на глубине до 10 мм и в отдельных случаях до 20 мм в изделиях правильной формы. Этот метод позволяет полностью автоматизировать контроль и разбраковку. Намагничивание изделий производится магнитными дефектоскопами (рис. 4), создающими магнитные поля достаточной напряжённости. После проведения контроля изделия тщательно размагничивают.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже