Читаем Большая Советская Энциклопедия (ДИ) полностью

  В дальнейшем термин «Д. п.» стал употребляться в широком смысле для обозначения разнообразных психологических концепций, которые, в противоположность статическому подходу к психике (выразившемуся, например, в ассоционизме и др. классических интеллектуалистских теориях психики, изучающих её в аспекте ощущений, восприятий, представлений), уделяют преимущественное внимание динамическим аспектам психики — побудительным мотивам, влечениям, интересам, конфликтам личности и т. д. Поведение человека трактуется при этом как результат действия внутрипсихических сил, стремлений и т. д., которые понимаются как бессознательные влечения (психоанализ и др. направления глубинной психологии), инстинкты (К. Лоренц), целевые действия (У. Мак-Дугалл), силы поля (К. Левин) и др. К Д. п. относят также направления в психологии личности, которые трактуют личность как динамическую саморазвивающуюся систему (Г. Олпорт, Г. Мёрфи и др.), отрицая при этом определяющую роль социально-исторических обстоятельств в её формировании.

  М. Г. Ярошевский.

Динамическая система

Динами'ческая систе'ма (в классическом смысле), механическая система с конечным числом степеней свободы, например система конечного числа материальных точек или твёрдых тел, движущаяся по законам классической динамики. Состояние такой системы обычно характеризуется её расположением (конфигурацией) и скоростью изменения последнего, а закон движения указывает, с какой скоростью изменяется состояние системы.

  В простейших случаях состояние можно охарактеризовать посредством величин w1, ..., wm, которые могут принимать произвольные (вещественные) значения, причём двум различным наборам величин w1, ..., wm и w'1, ..., w'm отвечают различные состояния, и обратно, а близость всех wi к wi' означает близость соответствующих состояний системы. Закон движения тогда записывается в виде системы обыкновенных дифференциальных уравнений:

  wi = fi(w1, ..., wm), i = 1, ..., m.          (1)

Рассматривая значения w1, ..., wm как координаты точки w в m-мерном пространстве, можно геометрически представить соответствующее состояние Д. с. посредством точки w. Эту точку называют фазовой (иногда также изображающей, или представляющей) точкой, а пространство — фазовым пространством системы (прилагательное «фазовый» связано с тем, что в прошлом состояния системы нередко называются её фазами). Изменение состояния со временем изображается как движение фазовой точки по некоторой линии (так называемой фазовой траектории; часто её называют просто траекторией) в фазовом пространстве. В последнем определено векторное поле, сопоставляющее каждой точке w выходящий из неё вектор f(w) с компонентами

  (f1(w1, ..., wm), ..., fm(w1, ..., wm))

Дифференциальные уравнения (1), которые с помощью введённых обозначений можно сокращённо записать в виде

  w = f(w),          (2)

означают, что в каждый момент времени векторная скорость движения фазовой точки равна вектору f(w), исходящему из той точки w фазового пространства, где в данный момент находится движущаяся фазовая точка. В этом состоит так называемая кинематическая интерпретация системы дифференциальных уравнений (1).

  Например, состояние частицы без внутренних степеней свободы (материальной точки), движущейся в потенциальном поле с потенциалом U(x1, x2, x3), характеризуется её положением x = (x1, x2, x3) и скоростью x; вместо скорости можно использовать импульс p = mx, где m — масса частицы. Закон движения частицы можно записать в виде

 

Формулы (3) представляют собой сокращённую запись системы шести обыкновенных дифференциальных уравнений 1-го порядка. Фазовым пространством здесь служит 6-мерное евклидово пространство, 6 компонент вектора фазовой скорости суть компоненты обычной скорости и силы, а проекция фазовой траектории на пространство положений частицы (параллельно пространству импульсов) есть траектория частицы в обычном смысле слова.

  Термин «Д. с.» применяется и в более широком смысле, означая произвольную физическую систему (например, систему автоматического регулирования, радиотехническую систему), описываемую дифференциальными уравнениями вида (1) или (2), и даже просто систему дифференциальных уравнений такого вида, безотносительно к её происхождению. См. также ст. Эргодическая теория.

  Лит.: Немыцкий В. В. и Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М. — Л., 1949; Коддингтон Э. А., Левинсон Н., Теория обыкновенных дифференциальных уравнений, пер. с англ., М., 1958, гл. 13—17; Халмош П. P., Лекции по эргодической теории, пер. с англ., М., 1959; Лефшец С., Геометрическая теория дифференциальных уравнений, пер. с англ., М., 1961.

  Д. В. Аносов.

Динамические межотраслевые модели

Перейти на страницу:

Похожие книги

100 великих зарубежных фильмов
100 великих зарубежных фильмов

Днём рождения кино принято считать 28 декабря 1895 года, когда на бульваре Капуцинок в Париже состоялся первый публичный сеанс «движущихся картин», снятых братьями Люмьер. Уже в первые месяцы 1896 года люмьеровские фильмы увидели жители крупнейших городов Западной Европы и России. Кино, это «чудо XX века», оказало огромное и несомненное влияние на культурную жизнь многих стран и народов мира.Самые выдающиеся художественно-игровые фильмы, о которых рассказывает эта книга, представляют всё многообразие зарубежного киноискусства. Среди них каждый из отечественных любителей кино может найти знакомые и полюбившиеся картины. Отдельные произведения кинематографистов США и Франции, Италии и Индии, Мексики и Японии, Германии и Швеции, Польши и Великобритании знают и помнят уже несколько поколений зрителей нашей страны.Достаточно вспомнить хотя бы ленты «Унесённые ветром», «Фанфан-Тюльпан», «Римские каникулы», «Хиросима, любовь моя», «Крёстный отец», «Звёздные войны», «Однажды в Америке», «Титаник»…Ныне такие фильмы по праву именуются культовыми.

Игорь Анатольевич Мусский

Кино / Энциклопедии / Словари и Энциклопедии