Читаем Большая Советская Энциклопедия (ДИ) полностью

то параметрической сетью линий u и v будут меридианы и параллели этой сферы). Величины u и v называются также внутренними координатами, т.к. точка на поверхности есть точка пересечения проходящих через неё координатных линий, т. е. может быть найдена путём построений на поверхности без обращения к объемлющему пространству.

  Радиус-вектор r произвольной точки М на S определяется уравнениями (2) как функция u и v. Частные производные ru и rv этой функции суть векторы, касательные соответственно к линиям u и v. Эти векторы в точке М лежат в касательной плоскости к S в М. Векторное произведение [ru, rv] определяет нормаль к S в точке М.

  Пусть s — длина дуги линии L на S и пусть u = f (t), v = g (t) — параметрические уравнения во внутренних координатах. Тогда, вдоль L r и s будут функциями от t, причём дифференциал s определяется равенством ds2 = dx2 + dy2 + dz2, правая часть которого есть скалярный квадрат вектора dr = rudu + rvdv, т. е. ds2 = dr2. Поэтому

ds2 = r2udu2 + 2rurvdudv + r2vdv2.

С помощью обозначений r2u = Е, rurv = F, r2v = G выражение для ds2 можно записать в виде

ds2 = Edu2 + 2Fdudv + Gdv2.          (3)

Правая часть соотношения (3) называется первой основной квадратичной формой поверхности S. С помощью этой формы можно измерять длины дуг на поверхности путём интегрирования выражения

 

вдоль рассматриваемой дуги. Поэтому форма (3) называется также метрической формой поверхности. Первая форма определяет также внутреннюю геометрию поверхности, т. е. совокупность фактов, которые могут быть получены путём измерений на поверхности, без обращения к объемлющему пространству. Внутренняя геометрия поверхности не меняется при её изгибании — деформации поверхности как абсолютно гибкой и нерастяжимой плёнки.

  Вторая основная квадратичная форма поверхности представляет собой выражение

Ldu2 + 2Мdudv + Ndv2,

в котором L = ruun, М = ruvn, N = rvvn (n — единичный вектор нормали к S в точке М). С помощью второй формы можно получить представление о пространственной форме поверхности. Например, кривизны 1/R нормальных сечений поверхности в данной точке М (т. е. линий пересечения S с плоскостями, проходящими через нормаль в М) вычисляются по формуле

 

Две основные формы поверхности, заданные в каких-либо внутренних координатах, определяют поверхность с точностью до положения в пространстве. Если заданы две формы

  Edu2 + 2Fdudv + Gdv2

и

  Ldu2 + 2Mdudv + Ndv2,

первая из которых положительная, а коэффициенты L, M и N второй удовлетворяют некоторой системе уравнений, из которых одно (полученное К. Гауссом) алгебраическое, а два других (полученные К. М. Петерсоном) — линейные дифференциальные уравнения с частными производными первого порядка, то найдётся поверхность, для которой эти формы являются соответственно первой и второй основными формами.

  Отмеченные уравнения Гаусса — Петерсона играют фундаментальную роль в теории поверхностей.

  Подробнее о поверхностях см. Поверхностей теория.

  Одним из объектов исследований в Д. г. являются семейства кривых и поверхностей. Такие семейства задаются посредством уравнений, содержащих параметры. Например, уравнение (х - a)2 + у2 = 1, содержащее параметр a, определяет семейство окружностей радиуса 1 с центрами в точках (a, 0), т. е. на оси Ox (рис. 12). С семейством кривых (поверхностей) связано понятие огибающей — такой кривой (поверхности), которая касается всех кривых (поверхностей) семейства. В рассмотренном выше примере огибающей будет пара параллельных оси Ox прямых, отстоящих от неё на расстоянии 1. Особенно детально в Д. г. исследованы двупараметрические семейства прямых b в пространстве, называемые конгруэнциями. Простейший пример конгруэнции — семейство параллельных прямых в пространстве. Истоком теории конгруэнций является геометрическая оптика.

  Различные разделы Д. г. посвящены изучению во всевозможных аспектах так называемых дифференциально-геометрических многообразии. Примерами таких многообразий могут служить кривые (одномерные многообразия), поверхности (двумерные многообразия), обычное евклидово пространство (трёхмерное многообразие). Более сложным примером может служить четырёхмерное многообразие, элементами которого являются прямые обычного евклидова пространства (прямая в декартовых координатах определяется уравнениями вида z = ax + b, z = су + d; числа a, b, с, d можно рассматривать как координаты этой прямой).

Перейти на страницу:

Похожие книги

100 великих зарубежных фильмов
100 великих зарубежных фильмов

Днём рождения кино принято считать 28 декабря 1895 года, когда на бульваре Капуцинок в Париже состоялся первый публичный сеанс «движущихся картин», снятых братьями Люмьер. Уже в первые месяцы 1896 года люмьеровские фильмы увидели жители крупнейших городов Западной Европы и России. Кино, это «чудо XX века», оказало огромное и несомненное влияние на культурную жизнь многих стран и народов мира.Самые выдающиеся художественно-игровые фильмы, о которых рассказывает эта книга, представляют всё многообразие зарубежного киноискусства. Среди них каждый из отечественных любителей кино может найти знакомые и полюбившиеся картины. Отдельные произведения кинематографистов США и Франции, Италии и Индии, Мексики и Японии, Германии и Швеции, Польши и Великобритании знают и помнят уже несколько поколений зрителей нашей страны.Достаточно вспомнить хотя бы ленты «Унесённые ветром», «Фанфан-Тюльпан», «Римские каникулы», «Хиросима, любовь моя», «Крёстный отец», «Звёздные войны», «Однажды в Америке», «Титаник»…Ныне такие фильмы по праву именуются культовыми.

Игорь Анатольевич Мусский

Кино / Энциклопедии / Словари и Энциклопедии